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1. Introduction

We consider in this paper the following initial value problem which consists in a time-dependent Schrödinger equation
with potential V set in an unbounded domain
i@tuþ @2
x uþ Vu ¼ 0; ðx; tÞ 2 R� ½0; T�;

uðx; 0Þ ¼ u0ðxÞ; x 2 R;
ð1Þ
where u0 is the initial data. The maximal time of computation is denoted by T. We assume here that V is a real-valued po-
tential such that V 2 C1ðR� Rþ;RÞ. Finally, we make the assumption that V is a repulsive potential [10]. This kind of poten-
tial then creates acceleration of the field compared to the free-potential equation [10,8,20,21].

For obvious reasons linked to the numerical solution of such problems, it is usual to truncate the spatial domain with a
fictitious boundary R :¼ oX ¼ fxl; xrg, where xl and xr, respectively, designate the left and right endpoints introduced to have
a bounded domain of computation X ¼�xl; xr½. Let us introduce the time domains XT ¼ X� ½0; T� and RT ¼ R� ½0; T�. Consid-
ering the fictitious boundary R, we are now led to solve the problem
i@tuþ @2
x uþ Vu ¼ 0; ðx; tÞ 2 XT ;

uðx; 0Þ ¼ u0ðxÞ; x 2 X:
ð2Þ
. All rights reserved.
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In the sequel of the paper, we assume that the initial datum u0 is compactly supported in the computational domain X.
Of course, a boundary condition set on RT must be added to system (2). An ideal boundary condition answering the prob-

lem is the so-called transparent boundary condition (TBC) which leads to a solution of (2) equal to the restriction of the solu-
tion of (1) on XT . A first well-known case considers V ¼ 0. This situation has been treated by many authors [2]. In this case,
using a Laplace transform in time on (1), solving the associated Helmholtz-type differential equation in x and going back to
the initial domain by inverse Laplace transform yields the following TBC in term of the Dirichlet-to-Neumann (DtN) operator
@nuþ e�ip=4@
1=2
t u ¼ 0; on RT ; ð3Þ
where n is the outwardly directed unit normal vector to R. The operator @1=2
t is known as the half-order derivative operator

(see Eq. (12) for its definition). Its nonlocal character related to its convolutional structure has led to many developments
concerning its accurate and efficient evaluation in the background of TBCs [2].

A second situation which is related to the above case is when the potential is only time varying: Vðx; tÞ ¼ VðtÞ. In this case,
the change of unknown
vðx; tÞ ¼ e�iVðtÞuðx; tÞ; ð4Þ
with
VðtÞ ¼
Z t

0
VðsÞds ð5Þ
reduces the initial Schrödinger equation with potential to the free-potential Schrödinger equation [5]. Then, the TBC (3) can
be used for v and the resulting DtN TBC for u is
@nuðx; tÞ þ e�ip=4eiVðtÞ@
1=2
t e�iVðtÞuðx; tÞ
� �

¼ 0; on RT : ð6Þ
In the two above situations, the potential does not depend on the spatial variable x. Very recently, some attempts have
been directed towards the derivation of TBCs for special potentials. In [18], the case of a linear potential is considered in the
background of parabolic equations in electromagnetism. Using the Airy functions, the TBC can still be written explicitly and
its accuracy is tested. Again, for the linear potential, improvements have been introduced in [12] using a discrete transparent
boundary condition. In [27], Zheng derives the TBC in the special case of a sinusoidal potential using Floquet’s theory. Exten-
sions to two-dimensional PDEs problems have been proposed in [13]. Finally, in [14], the authors consider the case of a Cou-
lomb-like potential which can be handled explicitly in the TBC by means of the Whitaker’s second functions. All these
solutions take care of the very special form of the potential. Let us remark that other solutions based on PML techniques have
also been recently proposed e.g. in [26].

To the best of our knowledge, the problem of considering a solution in the case of a general potential has not been yet
addressed. We must notice here that a general theory cannot be expected to provide a general TBC. A more realistic goal
is to build an accurate approximation of the TBC which is usually called artificial or Absorbing Boundary Condition (ABC).
The aim of this paper is to prospect different ways of building such boundary conditions and to approximate them correctly
to get unconditionally stable numerical schemes.

The paper is organized as follow. In Section 2, we present two possible approaches for building ABCs for the one-dimen-
sional Schrödinger equation with a variable repulsive potential. The central key point of these approaches is based on a der-
ivation of a suitable asymptotic expansion of the related Dirichlet-to-Neumann (DtN) operator. Therefore, after giving the
basic tools of fractional pseudodifferential operators, we derive in Section 2.2 some asymptotic of the DtN map for our equa-
tion taking care of the principal symbol. Numerical formal comparisons are provided in the case of a linear potential. Next,
Section 2.3 discusses the choice of the ABC and some modifications of the asymptotic expansions yielding a first class of sec-
ond- and fourth-orders ABCs. A well-posedness result is then stated in Section 2.4. A second family of ABCs is proposed in
Section 2.5. It is shown in Section 2.6 that these ABCs can be identified to the first ones if and only if the potential is time
independent. Otherwise, these new conditions yield different formulations. We consider in Section 3 the semi-discretization
of the various ABCs and state unconditional stability results for the first class of ABCs. Additional (symbolic) approximations
of the second family of ABCs are introduced in view of an efficient discretization. Section 4 presents some numerical com-
putations for time dependent and time independent space variable potentials. These simulations show the high accuracy and
effectiveness of the proposed ABCs. Moreover, comparisons are provided between the two approaches. Finally, a conclusion
is given in Section 5.
2. Artificial boundary conditions for a general potential

2.1. Two possible approaches

The first natural strategy would consists in building an approximate boundary condition based on Eq. (1) with unknown
u.

A second strategy is the following. Let us consider now that u is the exact solution of (1) and let us define the phase func-
tion V as a primitive in time of the potential V
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Vðx; tÞ ¼
Z t

0
Vðx; sÞds: ð7Þ
Let us introduce v as the new unknown defined by
vðx; tÞ ¼ e�iVðx;tÞuðx; tÞ: ð8Þ
We obviously have v0ðxÞ ¼ u0ðxÞ. Moreover, plugging u given by (7) and (8) into the Schrödinger equation with potential
shows that v is solution to the variable coefficient Schrödinger equation
i@tvþ @2
x vþ f@xvþ gv ¼ 0; in XT ; ð9Þ
setting f ¼ 2i@xV and g ¼ i@2
xV � ð@xVÞ2. The fundamental reason why considering this change of unknown is crucial is that

this first step would lead to the TBC applied to v and associated to (9) for a time-dependent but x-independent potential (since
then f ¼ g ¼ 0). This is not the case if we work directly with the initial unknown u for (2) which would give an approximate
artificial boundary condition even for a time-dependent and x-independent potential. Let us note that this strategy (called
‘‘Phase Function Transformation Strategy” in [2]) has been first applied with success in [5] for nonlinear artificial boundary
conditions for the one-dimensional nonlinear Schrödinger equation.

We will see later that these approaches lead to different artificial boundary conditions which however coincide in some
cases.

2.2. Derivation of the asymptotic expansion of the DtN operator

2.2.1. Fractional pseudodifferential operators
Since the Schrödinger equation has a space-time potential, it is well-known that an approach purely based on the Laplace

transform is inadequate. Furthermore, for a x-dependent potential Vðx; tÞ ¼ VðxÞ, being able to build the TBC would require
the solution of a second-order Helmholtz-type differential equation after applying a Laplace transform. This is impossible in
general for a given potential. This is the reason why trying to build an approximate boundary condition is more realistic. To
this end, we propose an approach based on the theory of pseudodifferential operators which naturally generalizes the La-
place transform and the use of a factorization theorem which gives an approximate solution to the second-order differential
equation in x. This approach is strongly related to the pioneering works of Engquist and Majda [15] for other kinds of PDEs.

A pseudodifferential operator Pðx; t; @tÞ is given by its symbol pðx; t; sÞ in the Fourier space
Pðx; t; @tÞuðx; tÞ ¼ F�1
t pðx; t; sÞûðx; sÞð Þ ¼

Z
R

pðx; t; sÞF tðuÞðx; sÞeits ds; ð10Þ
where F t is the time Fourier transform
F tðuÞðx; sÞ ¼
1

2p

Z
R

uðx; tÞe�its dt:
The inhomogeneous pseudodifferential operator calculus that we use in the paper was introduced in [17] and applied e.g. in
[3]. For the sake of conciseness, we only give the useful material needed here. Let a be a real number and N an open subset of
R. Then (see in [24]), the symbol class SaðN� NÞ denotes the linear space of C1 functions aðx; t; sÞ in N� N� R such that for
each K # N� N and that for all indices b, d, c, there exists a constant Cb;d;cðKÞ such that
j@b
s@

d
t @

c
xaðx; t; sÞj 6 Cb;d;cðKÞð1þ jsj2Þa�b

;

for all ðx; tÞ 2 K and s 2 R. A function f is said to be inhomogeneous of degree m if: f ðx; t;lsÞ ¼ lmf ðx; t; sÞ, for any l > 0.
Then, a pseudodifferential operator P ¼ Pðx; t; @tÞ is inhomogeneous and classical of order M, M 2 Z=2, if its total symbol, des-
ignated by p ¼ rðPÞ, has an asymptotic expansion in inhomogeneous symbols fpM�j=2g

þ1
j¼0 as
pðx; t; sÞ �
Xþ1
j¼0

pM�j=2ðx; t; sÞ;
where each function pM�j=2 is inhomogeneous of degree M � j=2, for j 2 N. The meaning of � is that
8 ~m 2 N; p�
X~m

j¼0

pM�j=2 2 SM�ð ~mþ1Þ=2:
A symbol p satisfying the above property is quoted by p 2 SM
S and the associated operator P ¼ OpðpÞ by inverse Fourier trans-

form by P 2 OPSM
S . Finally, let us remark that smoothness of the potential V is required for applying pseudodifferential oper-

ators theory. However, this is crucial into the complementary set of X but a much weaker regularity hypothesis could be
expected for the interior problem set in X allowing therefore a wide class of potentials.

Other useful nonlocal operators in the sequel of the paper are the fractional integration operators Ia=2
t of order a=2 which

are defined by the relation
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Ia=2
t f ðtÞ ¼ 1

Cða=2Þ

Z t

0
ðt � sÞa=2�1f ðsÞds; for a 2 N ð11Þ
and have Fourier symbol i
s

� �a=2, where C designates the Gamma special function. Another operator is the fractional differen-
tial operator @1=2

t given by
@
1=2
t f ðtÞ ¼ 1ffiffiffiffi

p
p @t

Z t

0

f ðsÞffiffiffiffiffiffiffiffiffiffi
t � s
p ds; ð12Þ
with symbol eip=4
ffiffiffi
s
p

. All along the paper, we consider that, for a complex number z,
ffiffiffi
z
p

is the principal determination of the
square-root with branch-cut along the negative real axis.

One of the key points of pseudodifferential operator calculus is that it enables to manipulate symbols of operators at the
algebraic level rather than operators at the functional level, therefore giving practical rules of computation e.g. for the com-
position of two variable coefficients integro-differential operators (that is with non polynomial symbols in s).

2.2.2. Computation of the asymptotic symbolic expansion of the DtN operator
For conciseness, we explain here how to compute the asymptotic expansion of the DtN operator for a given model

Schrödinger equation with smooth variable coefficients A and B
Lðx; t; @x; @tÞw ¼ i@twþ @2
x wþ A@xwþ Bw ¼ 0: ð13Þ
Since we are trying to build an approximation of the DtN operator at the boundary, we must be able to write the normal
derivative trace operator @x (focusing on the right point xr) as a function of the trace operator through an operator Kþ which
involves some (fractional) time derivatives of w as well as the effect of the potential V and its ðx; tÞ variations. This can be
done in an approximate way thanks to the factorization of L given by relation (13)
Lðx; t; @x; @tÞ ¼ ð@x þ iK�Þð@x þ iKþÞ þ R; ð14Þ
where R 2 OPS�1 is a smoothing pseudodifferential operator. The operators K� are pseudodifferential operators of order 1/2
(in time) and order zero in x. Computing the operators K� in an exact way through their respective total symbols rðK�Þ can-
not be expected in general. Therefore, an asymptotic form of the total symbol rðK�Þ is sought as
rðK�Þ ¼ k� �
Xþ1
j¼0

k�1=2�j=2; ð15Þ
where k�1=2�j=2 are symbols corresponding to operators of order 1=2� j=2.
Now, expanding the factorization (14), identifying the terms in L in front of the @x operators with the ones from the ex-

panded factorization and finally using a few symbolic manipulations yield the system of equations
iðk� þ kþÞ ¼ a;

i@xk
þ �

P1
a¼0

ð�iÞa
a!
@a

sk
�@a

t k
þ ¼ �sþ b;

8<: ð16Þ
with aðx; tÞ ¼ rðAÞ ¼ A, bðx; tÞ ¼ rðBÞ ¼ B, since A and B are two functions of ðx; tÞ.
Looking at the first equation of system (16), we see that we must have: k�1=2 ¼ �kþ1=2. Now, if we identify the highest order

symbol in the second equation of system (16), then one gets four possibilities
kþ1=2ðsÞ ¼ �
ffiffiffiffiffiffiffi
�s
p

ð17Þ
or
kþ1=2ðx; t; sÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sþ bðx; tÞ

q
: ð18Þ
The first choice can be viewed as considering a principal classical symbol and the second possibility yields a semi-classical
symbol (following the notations e.g. in [10]). Let us now adopt the first strategy which consists in working on Eq. (1) for u
setting A ¼ 0 and B ¼ V . Following e.g. [2], the principal symbol with negative imaginary part characterizes the outgoing part
of the wave field u. Studying the sign of (17) and (18) for a real-valued potential V shows that the negative sign gives the
good choice. Therefore, we obtain the two possible symbols
kþ1=2 ¼ �
ffiffiffiffiffiffiffi
�s
p

ð19Þ
and
kþ1=2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sþ V
p

: ð20Þ
Let us now consider the second choice based on the gauge change leading to compute v solution to (9) for A ¼ f and B ¼ g.
Then, again, choosing (19) yields the outgoing solution for v. However, g is now a complex-valued potential with no fixed
sign. Therefore, we cannot determine the outgoing wave for (18).
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Choosing the principal symbol is a crucial point since it is directly related to the accuracy of the artificial boundary con-
dition. Moreover, for a given choice of the principal symbol, the corrective asymptotic terms fkþ1=2�j=2gjP1 are different since
they are computed in cascade developing the infinite sum in the second equation of (16). For the first strategy, we have the
following proposition.

Proposition 1. Let us fix kþ1=2 by the expression (19). Then, the solution to system (16) is given by
kþ0 ¼
1

2kþ1=2

�i@xk
þ
1=2 � iakþ1=2

� �
ð21Þ
and, for j 2 N, j P 1, by
kþ�j=2 ¼
1

2kþ1=2

 
bdj;1 � i@xk

þ
�j=2þ1=2 � iakþ�j=2þ1=2�

Xj

k¼1

kþ�j=2þk=2k
þ
1=2�k=2 �

Xðjþ1Þ=2

a¼1

ð�iÞa

a!

Xjþ1�2a

k¼0

@a
sk
þ
�j=2þk=2þa@

a
t k
þ
1=2�k=2

!
; ð22Þ
where dj;1 ¼ 0 if j–1 and d1;1 ¼ 1.

Applying the above proposition to our situation, one obtains the following corollary.

Corollary 1. If we fix the principal symbol kþ1=2 ¼ �
ffiffiffiffiffiffiffi
�s
p

for a ¼ f and b ¼ g, then the next three terms of the asymptotic symbolic
expansion are given by
kþ0 ¼ @xV; kþ�1=2 ¼ 0 and kþ�1 ¼
i@xV
4s

: ð23Þ
For the second choice (18), the first symbols of the asymptotic expansion are given by the following proposition.

Proposition 2. If one considers kþ1=2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sþ V
p

in (16) for a ¼ 0 and b ¼ V, then one has
kþ0 ¼ 0; kþ�1=2 ¼ 0; and kþ�1 ¼
�i
4

@xV
�sþ V

: ð24Þ
Remark 1. We cannot obtain a general expression similar to (22) for the second choice. The reason is that the terms appear-
ing in (16) may be inhomogeneous. Indeed, derivating the symbols kþj may lead to a sum of several terms of different orders.
This is the case for example for @xk

þ
�1, which is the sum of two terms, one of order �1 and the other of order �2.

Remark 2. Considering kþ1=2 ¼ �
ffiffiffiffiffiffiffi
�s
p

in (16) for a ¼ 0 and b ¼ V would give some symbols which are approximations of
kþ1=2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sþ V
p

and (24) by using a second-order truncated Taylor expansion when jsj ! þ1. For this reason, this case
which leads to less accurate artificial boundary conditions will not be considered in the sequel.
2.2.3. Comparison of the exact and approximate symbols for a linear potential
In the case of a linear potential V ¼ x, the total symbol kþðx; sÞ can be computed. It is thus possible to compare it to its

asymptotic expansion based on (24). Applying a Fourier transform to Eq. (2) yields
@2
x ûþ ð�sþ xÞû ¼ 0: ð25Þ
According to [18], the outgoing solution to (25) is
ûðx; sÞ ¼ Ai ðx� sÞe�ip=3� �
; ð26Þ
where Ai stands for the Airy function [1]. Derivating this expression, we obtain
@nûðx; sÞ ¼ e�ip=3 Ai0 ðx� sÞe�ip=3
� �

Ai ðx� sÞe�ip=3ð Þ ûðx; sÞ; ð27Þ
which means that the total symbol of the DtN operator is
kþ ¼ e2ip=3 Ai0 ðx� sÞe�ip=3
� �

Ai ðx� sÞe�ip=3ð Þ : ð28Þ
The application of Corollary 2 gives the first-order and second-order approximate symbols
r1 ¼ ikþ1=2 ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sþ x
p

;

r2 ¼ i kþ1=2 þ kþ0 þ kþ�1=2 þ kþ�1

� �
¼ r1 þ 1

4
1
�sþx ;

ð29Þ
setting V ¼ x.
Let us fix the boundary condition at xr ¼ 10. For comparison, we draw on the two pictures of Fig. 1 the three symbols (28)

and (29) in the complex plane for values of s in ½�50; 0� (left) and [0; 50] (right). For negative values of s, we observe an
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Fig. 1. Comparison of the exact total symbol kþ and its first- and second-order asymptotic approximations r1 and r2 in the complex plane at xr ¼ 10 and for
s 2 ½�50; 0� (left picture) and s 2 ½0; 50� (right picture).
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important correction when considering r2 instead of r1. The order of accuracy is about 10�5 for jsj ¼ 50 (see Fig. 2). For po-
sitive values of s we can see that the approximation of the symbol kþ is again improved when r2 is considered instead of r1.
However, for both approximations, a singularity appears for s ¼ xr while it is not the case for kþ which is smooth. This is the
most dominant error in the approximation process of the symbols (see Fig. 2) and as a consequence in the construction of the
artificial boundary condition. Finally, the error decays when jsj is large (see Fig. 2) which is coherent with the asymptotic
expansion (15) of the symbol kþ. In particular, the symbols kþ1=2 and kþ�1 given by the symbolic calculus rules are exactly
the first terms of the asymptotic expansion of kþ in terms of Airy functions (28) for large values of s (see e.g. [1] Chapter
10, properties 10.4.58, 10.4.59 and 10.4.61 p. 448).
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2.3. Choosing the ABC

If we assume that V is a real-valued smooth function, then the L2ðRÞ-norm of the solution u to system (1) is conserved. If
we truncate the domain by introducing a fictitious boundary, then one can expect that the L2ðXÞ-norm of the solution is
bounded by ku0kL2ðXÞ. This is for example proved in [4] in the case of the free-potential. In the case of a general potential,
the expression of the artificial boundary condition is essential in the proof of a similar result. In particular, by adapting
the proof given in [7] using the Plancherel theorem for Laplace transform, the following Lemma is the keypoint for proving
a well-posedness result.

Lemma 1. Let u 2 H1=4ð0; TÞ be a function extended by zero for any time s > T. Then, we have the following properties:
R eip=4
Z 1

0
�u @

1=2
t udt

� �
P 0;

R

Z þ1

0
�uItudt

� �
¼ 0:
This Lemma emphasizes the fact that the artificial boundary condition must have a symmetrical form. Since our approach
gives the principal symbol of an operator, an infinite choice of corresponding operators with this principal symbol is possible.
For symmetrization reasons, we propose to fix the choice of the artificial boundary condition based on the principal symbol
kþ1=2 ¼ �

ffiffiffiffiffiffiffi
�s
p

and (23) as follows:

Cancelling the outgoing wave corresponding to kþ1=2 for v writes down
@nvþ iKþv ¼ 0; on RT : ð30Þ
Retaining the M first symbols fkþ1=2�j=2gM�1PjP0, we consider the associated artificial boundary condition
@nuM � ið@xVÞuM þ ieiVXM�1

j¼0

Op kþ1=2�j=2

� �
e�iVuM
� �

¼ 0; on RT ; ð31Þ
after replacing v in (30) by its expression (8). In Eq. (31), uM designates an approximation of u since we do not have a Trans-
parent Boundary Condition. However, uM will be denoted by u in the sequel for conciseness. We adopt the following compact
notation of (31)
@nuþKM
‘ ðx; t; @tÞu ¼ 0; on RT ; ð32Þ
where M P 1 corresponds to the order of the boundary condition and is equal to the total number of terms kþj=2 retained in
the sum. The subscript ‘ ¼ 0 (respectively ‘ ¼ 1) refers to the choice (19) (respectively (20)) of the principal symbol kþ1=2.

Let us begin by considering ‘ ¼ 0 and M ¼ 2. Then one directly obtains
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K2
0ðx; t; @tÞu ¼ e�ip=4eiVðx;tÞ@

1=2
t e�iVðx;tÞu
� �

; ð33Þ
which is a symmetrical operator. The case M ¼ 4 is more ambiguous. Indeed, we only have access to the principal symbol
kþ�1 ¼ i@xV

4s of an operator. A first possible choice would consist in considering that
Op kþ�1

� �
v ¼ @nV

4
Itv modðOPS�3=2

S Þ: ð34Þ
(If A and B are two pseudodifferential operators of order a then we write A ¼ BmodðOPSbÞ to designate that A� B are equal
modulo a pseudodifferential operator of OPSb, b < a. A similar notation will be adopted at the symbol level:
rA ¼ rB modðSbÞ.) However, the operator in the right-hand side is not symmetrical. Well-posedness results can be however
stated with such a choice but under some very restrictive assumptions on V. A better choice of operator is
Op kþ�1

� �
v ¼ sgð@nVÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
j@nV j

p
2

It

ffiffiffiffiffiffiffiffiffiffiffiffi
j@nV j

p
2

v

 !
modðOPS�3=2

S Þ; ð35Þ
which is symmetrical unlike (34) and leads to a well-posedness result under weaker assumptions. In the above equation,
sgð�Þ designates the sign function.

We finally obtain the following proposition:

Proposition 3. For ‘ ¼ 0, the artificial boundary condition of order M is given by
@nuþKM
0 u ¼ 0; on RT ; ð36Þ
with
K2
0ðx; t; @tÞu ¼ e�ip=4eiVðx;tÞ@

1=2
t e�iVðx;tÞu
� �

ð37Þ
and
K4
0ðx; t; @tÞu ¼ K2

0ðx; t; @tÞuþ isgð@nVÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
j@nV j

p
2

eiVðx;tÞIt

ffiffiffiffiffiffiffiffiffiffiffiffi
j@nV j

p
2

e�iVðx;tÞu

 !
: ð38Þ
The boundary condition (36) is referred to as ABCM
0 in the sequel.
2.4. A well-posedness result for ABCM
0

Considering the artificial boundary conditions (36) of Proposition (3), we get the following well-posedness result.

Proposition 4. Let u0 2 L2ðXÞ be a compactly supported initial datum such that Suppðu0Þ 	 X. Let V 2 C1ðR� Rþ;RÞ be a real-
valued potential. Let us denote by u a solution of the initial boundary value problem
i@tuþ @2
x uþ Vu ¼ 0; in XT ;

@nuþKM
0 u ¼ 0; on RT ;

uðx;0Þ ¼ u0ðxÞ; 8x 2 X;

8><>: ð39Þ
where the operators KM
0 , M ¼ 2;4, are defined in Proposition 3. Then, u fulfils the following energy bound:
8t > 0; kuðtÞkL2ðXÞ 6 ku0kL2ðXÞ; ð40Þ
for M ¼ 2. Moreover, if sgð@nVÞ is constant on RT , then the inequality (40) holds for M ¼ 4. In particular, this implies that we have
the uniqueness of the solution u of the initial boundary value problem (39).

Proof. Let us multiply the Schrödinger equation by �i�u, and integrate by parts on X. We obtain the following equation:
@t

Z xr

xl

juj2

2
dx� i �u@nu½ �xr

xl
þ i
Z xr

xl

j@xuj2dx� i
Z xr

xl

Vðx; tÞjuj2dx ¼ 0: ð41Þ
Taking the real part of the above expression and integrating on an arbitrary time interval ½0; T� leads to
1
2
kuðTÞk2

L2ðXÞ � ku0k2
L2ðXÞ

� �
¼ R

Z T

0
i�u@nu½ �xr

xl
dt

� �
þR i

Z T

0

Z xr

xl

V juj2 dxdt

 !
: ð42Þ
Since V is a real-valued potential, the second term of the right-hand side of Eq. (42) is equal to zero. Therefore, we now have
to study the sign of the first term. Let us focus on ABC4

0, the case ABC2
0 being then trivial. The quantity i�uðxÞ@nuðxÞ is the sum of

the two terms
�ie�ip=4e�iVu@1=2
t e�iVu
� �

ð43Þ
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and
sgð@nVÞ
4

ffiffiffiffiffiffiffiffiffiffiffiffi
j@nV j

p
e�iVu It

ffiffiffiffiffiffiffiffiffiffiffiffi
j@nV j

p
e�iVu

� �
: ð44Þ
Then, for x ¼ xl;r, we have to determine the sign of the two quantities
R �ie�ip=4
Z T

0
ul;rðtÞ@

1=2
t ul;rðtÞdt

� �
; ð45Þ

R

Z T

0

sgð@nVðxl;r; tÞÞ
4

wl;rðtÞItwl;rðtÞdt
� �

; ð46Þ
with ul;rðtÞ ¼ ðe�iVuÞðxl;r; tÞ and wl;rðtÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffi
j@nV j

p
e�iVuÞðxl;r; tÞ. In the above relations, we set fl;r ¼ f ðxl;rÞ, for a given function f.

Thanks to Lemma 1, the term in (45) is negative. Under the assumption that the sign of @nVðxl;r; tÞ does not depend on the
time t, one can isolate sgð@nVðxl;r; tÞÞ out of the integral in (46) showing then that the integral term is equal to zero thanks to
Lemma 1. This finally proves that the left-hand side of (42) is negative and that the energy inequality (40) holds. h

Remark 3. If V is a complex-valued potential [23], some results remain true under the assumption that V is dissipative, that
is IðVðx; tÞÞP 0, for ðx; tÞ 2 R� ½0; T�. More precisely, one can still construct the artificial boundary conditions ABCM

0 given by
(36)–(38), with M ¼ 2;4. Moreover, the well-posedness result holds for ABC2

0. It is still possible to symmetrize the artificial
boundary condition ABC4

0 by writing
@nV l;r ¼ eihl;r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j@nV l;rj

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j@nV l;rj

q
; ð47Þ
where t#hl;rðtÞ denotes the argument of @nV on the boundary xl;r. However, the adaptation of the proof of the well-posedness
result for the additional term does not seem possible even for a constant argument.
2.5. The other choice of ABC: ABCM
1

After studying the first ABC, let us consider the other artificial boundary condition ABCM
1 , for M ¼ 2 and M ¼ 4.

Proposition 5. For ‘ ¼ 1, the artificial boundary condition of order M based on the first strategy for symbols (24) is given by
@nuþKM
1 u ¼ 0; on RT ; ð48Þ
with
K2
1ðx; t; @tÞu ¼ Op �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sþ V
p� �

u ð49Þ
and
K4
1ðx; t; @tÞu ¼ K2

1ðx; t; @tÞuþ
1
4

Op
@xV
�sþ V

� �
u: ð50Þ
The boundary condition (48) is referred to as ABCM
1 in the sequel of the paper.

Studying the well-posedness of the initial boundary value problem related to the boundary condition ABCM
1 (48)–(50) is

more difficult than ABCM
0 . Indeed, the expressions of the pseudodifferential operators involved in (49) and (50) is based on

the inverse Fourier representation (10). Therefore, proving an equivalent result to Lemma 1 cannot be obtained by an argu-
ment based on the Plancherel Theorem for a general potential V depending on x and t. However, if Vðx; tÞ ¼ VðxÞ, then the
well-posedness result is trivial since ABCM

1 is strictly equivalent to ABCM
0 . This is the aim of the next section.

2.6. The case V ¼ VðxÞ: connection between the ABCs and numerical accuracy comparisons

Our goal here is to prove that ABCM
0 and ABCM

1 are equivalent if the potential does not depend on t. This is no longer true if
V is also time-dependent (we will see a modified version of these operators for a suitable numerical approximation in Section
3.2). The result is mainly based on the following Lemma.

Lemma 2. If a is a t-independent symbol of Sm and Vðx; tÞ ¼ VðxÞ, then the following identity holds:
Op aðs� VðxÞÞð Þu ¼ eitV Op aðsÞð Þ e�itV uðx; tÞ
� �

: ð51Þ
Proof. Let us write the definition of the symbol as an inverse Fourier transform and let us make the change of variable
q ¼ s� VðxÞ in the considered integral. Then, we have the following set of equalities:
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Op aðs� VðxÞÞð Þu ¼
R

R
aðs� VðxÞÞF tðuÞðx; sÞeits ds

¼
R

R
aðqÞF tðuÞðx;qþ VðxÞÞeitqeitVðxÞ dq

¼ eitVðxÞ R
R

aðqÞF t t#e�itVðxÞuðx; tÞ
� �

ðx;qÞeitq dq
¼ eitVðxÞOp aðsÞð Þðe�itVðxÞuðx; tÞÞ;
leading to the proof of the Lemma. h

A direct application of the above Lemma gives the following Corollary.

Corollary 2. If the potential V is time independent, then the artificial boundary conditions ABCM
0 and ABCM

1 are equivalent, for
M ¼ 2;4, with Vðx; tÞ ¼ tVðxÞ. In particular, the well-posedness of the associated bounded initial value problem is immediate from
Proposition 4.

Proof. The proof is direct applying Lemma 2. h

Among the class of x-dependent potentials, some exact solutions are known (see e.g. [9]) since they can be related to the
free-potential Schrödinger equation. It is in particular known that the following traveling Gaussian beam
uHðx; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

�4t þ i

s
exp

�ix2 � k0xþ k2
0t

�4t þ i

 !
ð52Þ
is solution to (1) for V ¼ 0 with suitable initial condition, where k0 is the wavenumber. Then, if u is solution to (1) with the
linear potential VðxÞ ¼ ax, a 2 R, and u0 ¼ uH

0 , it is given by the expression
uðx; tÞ ¼ e�i �atxþt3
3 jaj

2
� �

uH x� t2a; t
� �

: ð53Þ
(Other solutions can be constructed for both repulsive and attractive quadratic potentials [9].) Since the exact reference solu-
tion is known in this case for the gaussian beam, one can compute @nu on the boundary of the computational domain, and
compare it with �KM

0 u to test the accuracy of ABCM
0 . To this aim, we fix VðxÞ ¼ x and xr ¼ 5. We present in Fig. 3 the evolution

of the absolute error j@nuþKM
0 uj (which should be equal to zero for a transparent boundary condition) at the right point xr

for various values of k0 and on the time interval ½0; T�, setting T ¼ 1:5. It is computed from the exact operators representa-
tions (11) and (12) using a formal computer algebra system. For completeness, we also provide the results when the TBC of
the Schrödinger equation without potential is used (see Eq. (3)). It is labelled ‘‘Without potential”. We directly observe that
the fourth-order ABC always gives a much better accuracy than the second-order one. The results with the ‘‘Without
potential” TBC also lead to very large errors. Moreover, the difference increases when higher wavenumbers are considered,
which is consistent with the a priori high-frequency asymptotic expansion (15).

3. Semi-discretization schemes and their properties

The aim of this section is to proceed to the semi-discretization in time of the artificial boundary conditions that we have
previously developed. Let us first consider the boundary conditions ABCM

0 . According to Proposition 3, we have
ABC2
0 : @nuþ e�ip=4eiV@

1=2
t e�iVu
� �

¼ 0; ð54Þ

ABC4
0 : @nuþ e�ip=4eiV@

1=2
t e�iVu
� �

þ i sgð@nVÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
j@nV j

p
2

eiV It

ffiffiffiffiffiffiffiffiffiffiffiffi
j@nV j

p
2

e�iVu

 !
¼ 0: ð55Þ
We use the symmetrical form of ABC4
0, which is a keypoint in the case V ¼ Vðx; tÞ. The associated initial boundary value prob-

lem is then
i@tuþ @2
x uþ Vu ¼ 0; in XT ;

@nuþKM
0 u ¼ 0; on RT ; for M ¼ 2 or 4;

uð�;0Þ ¼ u0; in X;

8><>: ð56Þ
for a maximal time of computation T.
Let us consider an interior Crank–Nicolson scheme for the time discretization of system (56). The interval ½0; T� is uni-

formly discretized using N intervals. Let Dt ¼ T=N be the time step and let us set tn ¼ nDt. Furthermore, un stands for an
approximation of uðtnÞ and Vn ¼ Vðx; tnÞ. If V ¼ VðxÞ is a time-independent potential, then the Crank–Nicolson discretization
of the Schrödinger equation is given by
i
unþ1 � un

Dt
þ @2

x
unþ1 þ un

2

� �
þ V

unþ1 þ un

2
¼ 0; for n ¼ 0; . . . ;N � 1: ð57Þ
If V ¼ Vðx; tÞ, for matters of symmetry, we choose the following time-discretization of the interior equation:



Fig. 3. Time variations of the absolute error j@nuþKM
0 uj at xr ¼ 5, for M ¼ 2;4, and for the ‘‘Without potential” ABC, for the exact reference solution. The

potential is Vðx; tÞ ¼ x and we consider four values of k0 (top, left: k0 ¼ 5; top, right: k0 ¼ 8; bottom, left: k0 ¼ 10; bottom, right: k0 ¼ 12).
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i
unþ1 � un

Dt
þ @2

x
unþ1 þ un

2
þ Vnþ1 þ Vn

2
unþ1 þ un

2
¼ 0: ð58Þ
Another possible discretization could be
i
unþ1 � un

Dt
þ @2

x
unþ1 þ un

2
þ Vnþ1unþ1 þ Vnun

2
¼ 0: ð59Þ
Nevertheless, this discretization does not preserve the symmetry of the interior equation. As a consequence, we are unable to
prove a stability result (for discrete convolutions) with this discretization. Thus, we will treat only the discretization given by
(58) where unconditional stability can be obtained.

Let us remark that, for implementation issues, it is often useful to set vnþ1 ¼ unþ1þun

2 ¼ unþ1=2, with u�1 ¼ 0 and u0 ¼ u0. Sim-
ilarly, we set Wnþ1 ¼ Vnþ1þVn

2 ¼ Vnþ1=2. Then, the time scheme (58) reads
2i
vnþ1

Dt
þ @2

x vnþ1 þWnþ1vnþ1 ¼ 2i
un

Dt
: ð60Þ
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It is well-known that a discretization of the TBC (3) which preserves the stability of the Crank–Nicolson scheme for the
free-potential Schrödinger equation is not a trivial task. We propose here two solutions for the discretization of the ABCs that
we propose. The first one is based on semi-discrete convolutions for the fractional operators involved in (54) and (55). We
are then able to show that the resulting semi-discrete scheme is unconditionally stable. At the same time, a solution based
on convolution operators may require long computational times. The second solution that we study is based on the approx-
imation of the fractional operators through the solution of auxiliary differential equations which can be solved explicitly. The
evaluation is then extremely efficient but at the same time, no stability proof is at hand.

3.1. Discretization based on discrete convolutions

Let us first recall that if ðfnÞn2N is a given sequence of complex values, we denote by ZðfnÞ or f̂ the complex-valued function
defined for jzjP RðZðfnÞÞ by the series
f̂ ðzÞ ¼ ZðfnÞðzÞ ¼
Xþ1
n¼0

fnz�n;
where RðZðfnÞÞ is the convergence radius of the series. Then, we have the following proposition (see e.g. [4,6]).

Proposition 6. If ff ngn2N is a sequence of complex numbers approximating ff ðtnÞgn2N, then the approximations of @1=2
t f ðtnÞ,

I1=2
t f ðtnÞ and Itf ðtnÞ with respect to the Crank–Nicolson scheme for a time step Dt are given by the numerical quadrature formulas
@
1=2
t f ðtnÞ 


ffiffiffiffiffiffi
2
Dt

r Xn

k¼0

bn�kf k; ð61Þ

I1=2
t f ðtnÞ 


ffiffiffiffiffiffi
Dt
2

r Xn

k¼0

an�kf k; ð62Þ

Itf ðtnÞ 

Dt
2

Xn

k¼0

cn�kf k; ð63Þ
where the sequences ðanÞn2N, ðbnÞn2N and ðcnÞn2N are such that
ða0;a1;a2;a3;a4;a5; . . .Þ ¼ 1;1; 1
2 ;

1
2 ;

3
8 ;

3
8 ; . . .

� �
;

bk ¼ ð�1Þkak; 8k P 0;
ðc0; c1; c2; c3; . . .Þ ¼ ð1;2;2; . . .Þ:

8><>: ð64Þ
Moreover, their respective Z-transforms are given by
ZðanÞðzÞ ¼ i

ffiffiffiffiffiffiffiffiffiffiffi
1þ z
1� z

r
; ZðbnÞðzÞ ¼ �i

ffiffiffiffiffiffiffiffiffiffiffi
1� z
1þ z

r
; ZðcnÞðzÞ ¼ �

1þ z
1� z

; ð65Þ
for jzj > 1.

Remark 4. Let us remark that analytical formulae for (64) are also given in [25].

The weak formulation of (58) writes, for w 2 L2ðXÞ
2i
Dt

Z xr

xl

ðvnþ1 � unÞwdxþ @xvnþ1w
	 
xr

xl
�
Z xr

xl

@xvnþ1@xwdxþ
Z xr

xl

Wnþ1vnþ1wdx ¼ 0: ð66Þ
According to the interior scheme (58), the semi-discretization of ABC2
0 for v at time tnþ1 is
@nvnþ1ðxl;rÞ ¼ �e�ip=4eiWnþ1

ffiffiffiffiffiffi
2
Dt

r Xnþ1

k¼0

bnþ1�ke�iWk
vkðxl;rÞ
and for ABC4
0

@nvnþ1ðxl;rÞ ¼ �e�ip=4eiWnþ1

ffiffiffiffiffiffi
2
Dt

r Xnþ1

k¼0

bnþ1�ke�iWk
vkðxl;rÞ

� i sgð@nWnþ1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j@nWnþ1j

q
2

eiWnþ1 Dt
2

Xnþ1

k¼0

cnþ1�k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j@nWkj

q
2

e�iWk
vkðxl;rÞ;
with the notation Wnþ1 ¼ Vnþ1þVn

2 . Then, we have the following proposition:
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Proposition 7. The semi-discrete Crank–Nicolson scheme for the initial boundary value problem (56) is given by
2i vnþ1�un

Dt þ @2
x vnþ1 þWnþ1vnþ1 ¼ 0; in X

@nvnþ1 þKM;nþ1
0 vnþ1 ¼ 0; on R; for M ¼ 2 or 4;

u0 ¼ u0; in X;

8><>: ð67Þ
for n ¼ 0; . . . ;N � 1, where vnþ1 ¼ unþ1þun

2 , Wnþ1 ¼ Vnþ1þVn

2 , and where the semi-discrete operators K2;nþ1
0 , K4;nþ1

0 are defined by
K2;nþ1
0 vnþ1 ¼ e�ip=4eiWnþ1

ffiffiffiffiffiffi
2
Dt

r Xnþ1

k¼0

bnþ1�ke�iWk
vk; ð68Þ

K4;nþ1
0 vnþ1 ¼ K2;nþ1

0 vnþ1 þ i sgð@nWnþ1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j@nWnþ1j

q
2

eiWnþ1 Dt
2

Xnþ1

k¼0

cnþ1�k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j@nWkj

q
2

e�iWk
vk: ð69Þ
Here,Wnþ1 is defined byWnþ1 ¼ Vnþ1þVn

2 , VnðxÞ being the approximation of Vðx; tnÞ using the trapezoidal rule 63 (V is given by (7)).
Moreover, for M ¼ 2, one has the following energy inequality:
8n 2 f0; . . . ;Ng; kunkL2ðXÞ 6 ku0kL2ðXÞ ð70Þ
and if sgð@nWkÞ is constant, then (70) also holds for M ¼ 4. This proves the L2ðXÞ stability of the scheme. Inequality (70) is the
semi-discrete version of (40) under the corresponding assumptions.

Proof. Let us multiply the first equation of (67) by �ivpþ1 and integrate by parts on X. This gives, for p P 0,
Z
X

jupþ1j2 � jupj2 þ iIðupþ1upÞ
2Dt

dx� i vpþ1@xvpþ1
h ixr

xl

þ i
Z

X
@xvpþ1
�� ��2dx� i

Z
X

Wpþ1 vpþ1
�� ��2dx ¼ 0:
Since V is assumed to be real, taking the real part of this expression yields
1
Dt

kupþ1k2
L2ðXÞ � kupk2

L2ðXÞ

2
¼ R i vpþ1@xvpþ1

h ixr

xl

� �
:

Summing up the terms in the above equation from p ¼ 0 to p ¼ n� 1, we obtain
1
2Dt

kunk2
L2ðXÞ � ku

0k2
L2ðXÞ

� �
¼ R

Xn�1

p¼0

i vpþ1@xvpþ1
h ixr

xl

 !
¼
X
c¼l;r

Ac; ð71Þ
with
Ac ¼ R
Xn�1

p¼0

ivpþ1ðxcÞ@nvpþ1ðxcÞ
 !

for c ¼ l; r: ð72Þ
Let us focus on the right endpoint xr, the left endpoint xl can be treated similarly. We get
ivpþ1ðxrÞ@nvpþ1ðxrÞ ¼ �ie�ip=4

ffiffiffiffiffiffi
2
Dt

r
eiWpþ1

r vpþ1
r

Xpþ1

k¼0

bpþ1�ke�iWk
r vk

r

þ sgð@nWpþ1
r ÞDt

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j@nWpþ1

r j
q

2
eiWpþ1

vpþ1
r

Xpþ1

k¼0

cpþ1�k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j@nWk

r j
q

2
e�iWk

r vk
r

that is
Xn�1

p¼0

ivpþ1ðxrÞ@nvpþ1ðxrÞ ¼ �ie�ip=4

ffiffiffiffiffiffi
2
Dt

r Xn�1

p¼0

vpþ1
r

Xpþ1

k¼0

bpþ1�kvk
r þ sgð@nW rÞ

Dt
2

Xn�1

p¼0

wpþ1
r

Xpþ1

k¼0

cpþ1�kw
k
r ; ð73Þ
with vk
r ¼ e�iWk

r vk
r , wk

r ¼
ffiffiffiffiffiffiffiffiffiffiffi
j@nWk

r j
p

2 e�iWk
r vk

r , Wk
r ¼ WkðxrÞ and Wk

r ¼WkðxrÞ. The assumption that sgð@nWk
r Þ is constant is

fundamental here. This implies that the study of the second term of the right-hand side of (73) reduces to the study of a
symmetrical term similar to the first term of the right-hand side. To determine the sign of the real part of the two terms
in the right-hand side of (73), we use the following Lemma. h

Lemma 3. Let ðbnÞn and ðcnÞn be the sequences defined in (64). Let ðukÞk2N be a complex valued sequence such that Rû < 1. Then,
we have the following properties
Qb ¼ e�ip=4
Xn�1

p¼0

upþ1
Xpþ1

k¼0

bpþ1�kuk 2 R� [ iR� ð74Þ
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and
Q c ¼
Xn�1

p¼0

upþ1
Xpþ1

k¼0

cpþ1�ku
k 2 iR: ð75Þ
This result immediately shows that the real part of the first term in the right-hand side of (73) is negative, whereas the
second term is purely imaginary. Finally, the inequality (70) holds, ending hence the proof of Proposition 7.

Let us prove now Lemma 3.

Proof. [Proof of Lemma 3]. Another way of writing Qb is given by
Qb ¼
Xn�1

p¼0

upþ1
Xpþ1

k¼0

bpþ1�kuk

 !
¼
Xn�1

p¼0

upþ1 bkIuk
� �

pþ1 ¼
Xþ1
p¼0

/n
pþ1 bkI/n

k

� �
pþ1;
where we have extended ðukÞ06k6n to an infinite sequence ð/n
kÞk2N by
/n
k ¼

uk if k 6 n;

ð�1Þjun if k ¼ nþ j;with j > 0:

(
ð76Þ
We recall the Plancherel theorem [11].

Lemma 4.
Let us consider two sequences ðfpÞp2N and ðgpÞp2N. If Rf̂ Rĝ < 1, then ZðfpgpÞ exists for jzj > Rf̂ Rĝ and we have
Xþ1

p¼0

fpgp ¼ Z fpgp

� �
ðz ¼ 1Þ ¼ 1

2p

Z 2p

0
f̂ ðreihÞĝ eih

r

� �
dh; ð77Þ
where the integration path is a circle with radius r such that Rf̂ < r < 1=Rĝ. Moreover, if the two radii satisfy Rf̂ < 1 and Rĝ < 1,
then r ¼ 1 can be chosen in (77).

Applying Lemma 4, we have� � Z 2p

Qb ¼ Z /n

pþ1ðbkI/n
kÞpþ1 ðz ¼ 1Þ ¼ 1

2p 0
f̂ ðeihÞĝðeihÞdh:
Using the shifting and convolution theorems (see e.g. [11]), we obtain
f̂ ðzÞ ¼ Zð/n
pþ1ÞðzÞ ¼

zþ 1
2

ûðzÞ;

ĝðzÞ ¼ Z ðbkI/n
kÞpþ1

� �
ðzÞ ¼ zþ 1

2
Z ðbkI/n

kÞp
� �

ðzÞ ¼ zþ 1
2
ZðbkÞðzÞûðzÞ;
with ûðzÞ ¼ ZðukÞðzÞ. Hence, a new expression of Qb is obtained as
Qb ¼ �
i

2p

Z 2p

0

zþ 1
2

���� ����2 ûðzÞj j2
ffiffiffiffiffiffiffiffiffiffiffi
1� z
1þ z

r( )�����
z¼eih

dh:
Moreover, since z# 1�z
1þz maps Cð0;1Þ to iR, the application z#� ie�ip=4

ffiffiffiffiffiffi
1�z
1þz

q
transforms Cð0;1Þ to R� [ iR�, proving relation

(74). Similarly, we have for Qc
Q c ¼
1

2p

Z 2p

0

zþ 1
2

���� ����2 ûðzÞj j2ZðcnÞðzÞ
( )�����

z¼eih

dh

¼� 1
2p

Z 2p

0

zþ 1
2

���� ����2 ûðzÞj j2 1þ z
1� z

( )�����
z¼eih

dh:
This implies that Q c 2 iR since the image of Cð0;1Þ is iR by z# 1þz
1�z. This finally proves relation (75) and completes the proof of

Lemma 3. h
3.2. Discretization based on auxiliary functions

While the previous strategy based on discrete convolution operators seems accurate and provides a stability result, it may
lead to significantly long computational times. Moreover, we will see during the numerical simulations that very small time
steps Dt are required to attain the optimal accuracy of the artificial boundary conditions based on convolution operators. This
can be relaxed using the following approach.

We saw that the ABCM
0 and ABCM

1 boundary conditions are equivalent in the case of time independent potentials. This is no
longer true for a time dependent function V. In such a situation, the scheme developed above can be used for ABCM

0 . For ABCM
1 ,
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the discretizations of the resulting pseudodifferential operators involved is not easy to obtain. In particular, the operators
with square-root symbols cannot be expressed in terms of fractional time operators since Lemma 2 does not hold. For these
reasons, we introduce the following additional approximations.

Lemma 5. The two following approximations hold
Op
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sþ V
p� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i@t þ V

p
modðOPS�3=2Þ ð78Þ
and
Op
@xV

4
1

�sþ V

� �
¼ sgð@nVÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
j@nV j

p
2

i@t þ Vð Þ�1

ffiffiffiffiffiffiffiffiffiffiffiffi
j@nV j

p
2

modðOPS�3Þ ð79Þ
Proof. Let us set A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i@t þ V

p
. The operator A is of order 1=2 and its total symbol rA admits thus an expansion under the

form: rA �
Pþ1

‘¼0rA;1=2�‘=2. Since A2 ¼ i@t þ V , we have
rðA2Þ ¼ rði@t þ VÞ ¼ �sþ V �
Xþ1
a¼0

ð�iÞa

a!
@a

srA@
a
t rA: ð80Þ
Using the asymptotic expansion of rA and an identification of the same order terms in (80), we obtain the following
approximation:
rA ¼ rð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i@t þ V

p
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sþ V
p

� i
8

@tVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sþ V
p 3 modðS�5=2Þ:
In terms of operators, this gives relation (78).
Similarly, setting B ¼ ði@t þ VÞ�1, B�1 ¼ i@t þ V and writing rðBB�1Þ ¼ 1, we get the asymptotic expansion
r i@t þ Vð Þ�1 ¼ 1
�sþ V

þ i@tV

ð�sþ VÞ3
modðS�4Þ: ð81Þ
If rpðPÞ designates the principal symbol of a pseudodifferential operator P, the following set of equalities holds:
rp sgð@nVÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
j@nV j

p
2

i@t þ Vð Þ�1

ffiffiffiffiffiffiffiffiffiffiffiffi
j@nV j

p
2

 !
¼ sgð@nVÞ j@nV j

4
rp i@t þ Vð Þ�1

¼ @nV
4

1
�sþ V

:

ð82Þ
Combining (81) and (82), we obtain (79) at the operators level. h

Thanks to Lemma 5, we now define the new approximations of ABCM
1 (see Proposition 5)
gABC2

1 : @nu� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i@t þ V

p
u ¼ 0; ð83Þ

gABC4
1 : @nu� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i@t þ V

p
uþ sgð@nVÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
j@nV j

p
2

ði@t þ VÞ�1

ffiffiffiffiffiffiffiffiffiffiffiffi
j@nV j

p
2

u

 !
¼ 0: ð84Þ
Let us begin by the second-order condition (83). An alternative approach to discrete convolutions (which cannot be applied
here) consists in approximating the square-root operator

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i@t þ V

p
using rational functions like in the present paper the mth

order Padé approximants [22]
ffiffiffi
z
p

 RmðzÞ ¼ am

0 þ
Xm

k¼1

am
k z

zþ dm
k

¼
Xm

k¼0

am
k �

Xm

k¼1

am
k dm

k

zþ dm
k

; ð85Þ
where the coefficients ðam
k Þ06k6m and ðdm

k Þ16k6m are given by
am
0 ¼ 0; am

k ¼
1

m cos2 ð2kþ1Þp
4m

� � ; dm
k ¼ tan2 ð2kþ 1Þp

4m

� �
: ð86Þ
Formally,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i@t þ V

p
is approximated by
Rmði@t þ VÞ ¼
Xm

k¼0

am
k �

Xm

k¼1

am
k dm

k ði@t þ V þ dm
k Þ
�1
: ð87Þ
Applying this process to Eq. (83), we have the new relation
@nu� i
Xm

k¼0

am
k uþ i

Xm

k¼1

am
k dm

k ði@t þ V þ dm
k Þ
�1u ¼ 0; ð88Þ
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which defines a second-order artificial boundary condition referred to as ABC2
1;m in the sequel. To write a suitable form of the

equation in view of an efficient numerical treatment, we classically introduce m auxiliary functions uk, for 1 6 k 6 m (see
Lindmann [19]) as follows:
uk ¼ i@t þ V þ dm
k

� ��1
u ð89Þ
leading to the following equation:
i@tuk þ ðV þ dm
k Þuk ¼ u; for 1 6 k 6 m at x ¼ xl;r; ð90Þ
with the initial condition ukðx;0Þ ¼ 0. The corresponding full artificial boundary condition is written as a system
@nu� i
Pm
k¼0

am
k uþ i

Pm
k¼1

am
k dm

k uk ¼ 0;

i@tuk þ ðV þ dm
k Þuk ¼ u; for 1 6 k 6 m; x ¼ xl;r;

ukðx;0Þ ¼ 0:

8>>>><>>>>: ð91Þ
Now, we have to discretize the above system. The semi-discretization of the interior scheme remains the same as before
(58), and consequently, (91) becomes
@nunþ1=2 � i
Pm
k¼0

am
k unþ1=2 þ i

Pm
k¼1

am
k dm

k unþ1=2
k ¼ 0;

i
unþ1

k
�un

k
Dt þ ðVnþ1=2 þ dm

k Þu
nþ1=2
k ¼ unþ1=2;

u0
k ¼ 0;

8>>>>><>>>>>:
ð92Þ
for 1 6 k 6 m and x ¼ xl;r, that is, in terms of vn functions
@nvnþ1 � i
Pm
k¼0

am
k vnþ1 þ i

Pm
k¼1

am
k dm

k unþ1=2
k ¼ 0;

i
unþ1

k
�un

k
Dt þ ðWnþ1 þ dm

k Þu
nþ1=2
k ¼ vnþ1;

u0
k ¼ 0:

8>>>>><>>>>>:
ð93Þ
The auxiliary function unþ1
k can be easily expressed at point xl;r as
unþ1
k ðxl;rÞ ¼

i
Dt �

Wnþ1
l;r
þdm

k

2

i
Dt þ

Wnþ1
l;r
þdm

k

2

un
kðxl;rÞ þ

1

i
Dt þ

Wnþ1
l;r
þdm

k

2

vnþ1ðxl;rÞ: ð94Þ
Using the first equation of (93), we finally obtain
@nvnþ1ðxl;rÞ þ �i
Xm

k¼0

am
k þ

i
2

Xm

k¼1

am
k dm

k
1

i
Dt þ

Wnþ1
l;r þdm

k

2

24 35vnþ1ðxl;rÞ ¼ �i
Xm

k¼1

am
k dm

k

2i
Dt

i
Dt þ

Wnþ1
l;r þdm

k

2

un
kðxl;rÞ

2
: ð95Þ
Eq. (95) finally gives a local inhomogeneous Fourier–Robin-type ABC, where the right-hand side is updated using (94).
Now, let us consider the fourth-order condition gABC4

1 given by (84)
@nu� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i@t þ V

p
uþ sgð@nVÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
j@nV j

p
2

ði@t þ VÞ�1

ffiffiffiffiffiffiffiffiffiffiffiffi
j@nV j

p
2

u

 !
on R� R: ð96Þ
Then, one has to introduce one more additional auxiliary function w such that
i@t þ Vð Þw ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
j@nV j

p
2

u: ð97Þ
We call ABC4
1;m the resulting approximation of gABC4

1 using the Padé approximation (85) and the additional differential
equation (97). Using again a Crank–Nicolson discretization of w, one gets the following approximate representation of
ABC4

1;m:
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@nvnþ1ðxl;rÞ þ �i
Pm
k¼0

am
k þ i

2

Pm
k¼1

am
k dm

k
1

i
Dtþ

Wnþ1
l;r

þdm
k

2

þ 1
2 sgð@nWnþ1

l;r Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j@nWnþ1

l;r j
p

2

ffiffiffiffiffiffiffiffiffiffiffiffi
j@nWnþ1

l;r
j

p
2

i
Dtþ

Wnþ1
l;r
2

24 35vnþ1ðxl;rÞ

¼ �i
Pm
k¼1

am
k dm

k

2i
Dt

i
Dtþ

Wnþ1
l;r

þdm
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2

um
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ðxl;rÞ
2 � sgð@nWnþ1

l;r Þ
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j@nWnþ1
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j
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2

2i
Dt

i
Dtþ

Wnþ1
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2

wnðxl;rÞ
2 ;

unþ1
k ðxl;rÞ ¼

i
Dt�

Wnþ1
l;r

þdm
k

2

i
Dtþ

Wnþ1
l;r

þdm
k

2

un
kðxl;rÞ þ 1

i
Dtþ

Wnþ1
l;r

þdm
k

2

vnþ1ðxl;rÞ;

wnþ1ðxl;rÞ ¼
i

Dt�
Wnþ1

l;r
2

i
Dtþ

Wnþ1
l;r
2

wnðxl;rÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
j@nWnþ1

l;r
j

p
2

i
Dtþ

Wnþ1
l;r
2

vnþ1ðxl;rÞ;

u0
kðxl;rÞ ¼ w0ðxl;rÞ ¼ 0;

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

ð98Þ
with 1 6 k 6 m, and 0 6 n 6 N � 1.
We previously proved (see Proposition 7) that the schemes based on the discrete convolutions are unconditionally

stable. It does not seem to be the case when rational Padé approximations are used. We do not have a proof of that
result but let us explain why unconditional stability does not hold through numerical investigations. One of the key-
points in Proposition 7 for proving the unconditional stability of the scheme based on convolution operators is that

the application F : z#FðzÞ :¼ �ie�ip=4
ffiffiffiffiffiffi
1�z
1þz

q
maps Cð0;1Þ to R� [ iR�. The analogous stability result for the Padé approxima-

tion would essentially be obtained by stating that it is also true for the application Fm : z#FmðzÞ :¼ �ie�ip=4Rm
1�z
1þz

� �
.

Unfortunately, this does not seem to be true. In particular, the image is even not in the lower left quarter plane when
z is close to the singular point �1. To illustrate this point, we draw in Fig. 4 the argument of both F and F50 and we also
zoom near z ¼ �1. As it can be seen, sign problems can arise prohibiting an a priori possible proof of an unconditional
stability result.

4. Numerical examples

For the numerical simulations, we consider the initial gaussian datum: u0ðxÞ ¼ eik0x�x2 , where k0 designates the wave
number fixed to: k0 ¼ 10 in our simulations. Concerning the spatial discretization, we use a variational formulation of the
semi-discrete time problem for nh elements (with size h) and integrate the ABCs in the scheme as a Fourier–Robin boundary
condition.

We split our analysis in two parts: time independent and time dependent potentials.
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Possible loss of stability for the rational Padé approximation. We compute the argument of FðeihÞ and F50ðeihÞ for h 2 ½0; 2p� (left picture). We zoom
e point z ¼ �1 in the right picture.
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and nh ¼ 8� 103. The reference solution for V2 (and also for V3 and V4 in the next subsection) is computed on a larger do-
main to avoid any effect related to reflection at the boundary. The same comments apply as for V1. Fig. 9 reports the max-
imum value of the reflection at the left boundary of the computational domain for the fourth-order ABCs, ABC4

0 and ABC4
1;50,

with respect to Dt and h. We see that the reflection decreases with h and Dt and that it saturates around 10�4:8. Unlike for V1,
a given time discretization of an ABC leads to the same level of accuracy (for Dt 6 10�3).

4.2. Time dependent potentials

We consider now two time- and space-dependent potentials: V3ðx; tÞ ¼ 5xt and V4ðx; tÞ ¼ xð2þ cos 2tÞ.
In the first situation, we present in Fig. 10 the fields amplitude in the domain ½xl; xr� ¼ ½�5;10� for a final time

T ¼ 2:5. The time step is Dt ¼ 5:10�4 and we use nh ¼ 8� 103. We see again the classification of the ABCs. Moreover,
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½xl; xr� ¼ ½�5; 10�). Fig. 12 draws the maximum of the reflection at the left endpoint for the fourth-order ABCs according
to Dt and h.

We finally report in Figs. 13 and 14 the results obtained for V4. For Fig. 13, we fix Dt ¼ 10�4 and nh ¼ 104. The domain of
computation is: ½xl; xr� ¼ ½�5;10� and the final time is T ¼ 2. We see again that increasing the order of an ABC increases the
accuracy. Unlike the previous case, ABC4

1;50 yields slightly lower reflection than ABC4
0. This can also be observed in Fig. 14 for a

given Dt.

5. Conclusion

This paper provides various constructions of Absorbing Boundary Conditions (ABCs) for the one-dimensional Schrödinger
equation with time- and space-variable repulsive potentials. This kind of problems includes many interesting situations met
in physics and applications. A complete mathematical analysis has been presented to emphasize the strengths and limita-
tions of the different approaches. Next, a numerical analysis of associated unconditionally stable schemes has been fully
developed. Numerical examples compare the different ABCs of various orders, showing that fourth-order ABCs yield accurate
computations.

This work can be seen as a first step towards the derivation of more complex situations like higher-dimensional
Schrödinger equations [6,16] (or also coupled systems of Schrödinger equations [29,28]) with potentials and nonlinearities.
These present additional computational difficulties and will be the subject of forthcoming developments.
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