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1. Introduction

We consider in this paper the following initial value problem which consists in a time-dependent Schrédinger equation
with potential V set in an unbounded domain

iOu+ 2u+Vu=0, (x,t)eRx][0;T],
u(X7 0) = uO(X)’ X ER,

(1)

where 1 is the initial data. The maximal time of computation is denoted by T. We assume here that V is a real-valued po-
tential such that V € C*(R x R", R). Finally, we make the assumption that V is a repulsive potential [10]. This kind of poten-
tial then creates acceleration of the field compared to the free-potential equation [10,8,20,21].

For obvious reasons linked to the numerical solution of such problems, it is usual to truncate the spatial domain with a
fictitious boundary X := 0Q = {xy, x;}, where x; and x,, respectively, designate the left and right endpoints introduced to have
a bounded domain of computation Q =Jx;;x;[. Let us introduce the time domains Q; = Q x [0; T] and X7 = X x [0; T]. Consid-
ering the fictitious boundary %, we are now led to solve the problem

iOu+u+Vu=0, (x,t)eQr,
u(x,0) = ug(x), xe Q.

(2)
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In the sequel of the paper, we assume that the initial datum u, is compactly supported in the computational domain Q.
Of course, a boundary condition set on Xt must be added to system (2). An ideal boundary condition answering the prob-
lem is the so-called transparent boundary condition (TBC) which leads to a solution of (2) equal to the restriction of the solu-
tion of (1) on Q. A first well-known case considers V = 0. This situation has been treated by many authors [2]. In this case,
using a Laplace transform in time on (1), solving the associated Helmholtz-type differential equation in x and going back to
the initial domain by inverse Laplace transform yields the following TBC in term of the Dirichlet-to-Neumann (DtN) operator

Onll + 492y =0, on Xy, 3)

where n is the outwardly directed unit normal vector to . The operator 8;/% is known as the half-order derivative operator
(see Eq. (12) for its definition). Its nonlocal character related to its convolutional structure has led to many developments
concerning its accurate and efficient evaluation in the background of TBCs [2].

A second situation which is related to the above case is when the potential is only time varying: V(x, t) = V(¢). In this case,
the change of unknown

V(x, t) = e MOu(x,t), (4)

with

V(t) = | /0 V(s)ds (5)

reduces the initial Schrédinger equation with potential to the free-potential Schrédinger equation [5]. Then, the TBC (3) can
be used for v and the resulting DtN TBC for u is

OnU(x, t) + e 40912 (e MOu(x £)) =0, on It. (6)

In the two above situations, the potential does not depend on the spatial variable x. Very recently, some attempts have
been directed towards the derivation of TBCs for special potentials. In [18], the case of a linear potential is considered in the
background of parabolic equations in electromagnetism. Using the Airy functions, the TBC can still be written explicitly and
its accuracy is tested. Again, for the linear potential, improvements have been introduced in [12] using a discrete transparent
boundary condition. In [27], Zheng derives the TBC in the special case of a sinusoidal potential using Floquet’s theory. Exten-
sions to two-dimensional PDEs problems have been proposed in [13]. Finally, in [14], the authors consider the case of a Cou-
lomb-like potential which can be handled explicitly in the TBC by means of the Whitaker’s second functions. All these
solutions take care of the very special form of the potential. Let us remark that other solutions based on PML techniques have
also been recently proposed e.g. in [26].

To the best of our knowledge, the problem of considering a solution in the case of a general potential has not been yet
addressed. We must notice here that a general theory cannot be expected to provide a general TBC. A more realistic goal
is to build an accurate approximation of the TBC which is usually called artificial or Absorbing Boundary Condition (ABC).
The aim of this paper is to prospect different ways of building such boundary conditions and to approximate them correctly
to get unconditionally stable numerical schemes.

The paper is organized as follow. In Section 2, we present two possible approaches for building ABCs for the one-dimen-
sional Schrédinger equation with a variable repulsive potential. The central key point of these approaches is based on a der-
ivation of a suitable asymptotic expansion of the related Dirichlet-to-Neumann (DtN) operator. Therefore, after giving the
basic tools of fractional pseudodifferential operators, we derive in Section 2.2 some asymptotic of the DtN map for our equa-
tion taking care of the principal symbol. Numerical formal comparisons are provided in the case of a linear potential. Next,
Section 2.3 discusses the choice of the ABC and some modifications of the asymptotic expansions yielding a first class of sec-
ond- and fourth-orders ABCs. A well-posedness result is then stated in Section 2.4. A second family of ABCs is proposed in
Section 2.5. It is shown in Section 2.6 that these ABCs can be identified to the first ones if and only if the potential is time
independent. Otherwise, these new conditions yield different formulations. We consider in Section 3 the semi-discretization
of the various ABCs and state unconditional stability results for the first class of ABCs. Additional (symbolic) approximations
of the second family of ABCs are introduced in view of an efficient discretization. Section 4 presents some numerical com-
putations for time dependent and time independent space variable potentials. These simulations show the high accuracy and
effectiveness of the proposed ABCs. Moreover, comparisons are provided between the two approaches. Finally, a conclusion
is given in Section 5.

2. Artificial boundary conditions for a general potential
2.1. Two possible approaches

The first natural strategy would consists in building an approximate boundary condition based on Eq. (1) with unknown

u.

A second strategy is the following. Let us consider now that u is the exact solution of (1) and let us define the phase func-
tion V as a primitive in time of the potential V



314 X. Antoine et al./Journal of Computational Physics 228 (2009) 312-335

V(x,t) = /OtV(x, s)ds. (7)

Let us introduce v as the new unknown defined by
V(x, t) = e V&Oy(x, 1), (8)

We obviously have vy (x) = uo(x). Moreover, plugging u given by (7) and (8) into the Schrodinger equation with potential
shows that v is solution to the variable coefficient Schrédinger equation

0+ 82v +fo,v+gv=0, inQr, 9)

setting f = 2i8,V and g = i9?V — (0,V)?. The fundamental reason why considering this change of unknown is crucial is that
this first step would lead to the TBC applied to v and associated to (9) for a time-dependent but x-independent potential (since
then f = g = 0). This is not the case if we work directly with the initial unknown u for (2) which would give an approximate
artificial boundary condition even for a time-dependent and x-independent potential. Let us note that this strategy (called
“Phase Function Transformation Strategy” in [2]) has been first applied with success in [5] for nonlinear artificial boundary
conditions for the one-dimensional nonlinear Schrédinger equation.

We will see later that these approaches lead to different artificial boundary conditions which however coincide in some
cases.

2.2. Derivation of the asymptotic expansion of the DtN operator

2.2.1. Fractional pseudodifferential operators

Since the Schrédinger equation has a space-time potential, it is well-known that an approach purely based on the Laplace
transform is inadequate. Furthermore, for a x-dependent potential V(x,t) = V(x), being able to build the TBC would require
the solution of a second-order Helmholtz-type differential equation after applying a Laplace transform. This is impossible in
general for a given potential. This is the reason why trying to build an approximate boundary condition is more realistic. To
this end, we propose an approach based on the theory of pseudodifferential operators which naturally generalizes the La-
place transform and the use of a factorization theorem which gives an approximate solution to the second-order differential
equation in x. This approach is strongly related to the pioneering works of Engquist and Majda [15] for other kinds of PDEs.

A pseudodifferential operator P(x,t,d;) is given by its symbol p(x,t, 7) in the Fourier space

P(x,t, de)u(x, t) = F; 1 (p(x,t, T) (X, 7)) :/p(x, t,T)F(u)(x,7)e" dr, (10
R
where F, is the time Fourier transform
_ 1 —itt
Fe(u)(x,7) = P /R u(x,t)e " dt.

The inhomogeneous pseudodifferential operator calculus that we use in the paper was introduced in [17] and applied e.g. in
[3]. For the sake of conciseness, we only give the useful material needed here. Let o be a real number and = an open subset of
R. Then (see in [24]), the symbol class S*(E x Z) denotes the linear space of C* functions a(x, t,7) in E x E x R such that for
each K C E x E and that for all indices g, J, 7, there exists a constant Cy;,(K) such that

Lo ara(x, t,T) < Cpop (K)(1 + |T)* 7,

for all (x,t) € K and 7 € R. A function f is said to be inhomogeneous of degree m if: f(x,t, ut) = u™f(x,t, ), for any u > 0.
Then, a pseudodifferential operator P = P(x, t, 9;) is inhomogeneous and classical of order M, M € 7 /2, if its total symbol, des-
ignated by p = ¢(P), has an asymptotic expansion in inhomogeneous symbols {prj/z}j*j as

+00
p(X, t7 T) ~ ZPM—j/Z (X7 t7 T)v
j=0

where each function p, ;/, is inhomogeneous of degree M — j/2, for j € N. The meaning of ~ is that

m .
VineN, p-Y pyj,eSt ™2
=0

A symbol p satisfying the above property is quoted by p € Sy’ and the associated operator P = Op(p) by inverse Fourier trans-
formby P € OPS’SV'. Finally, let us remark that smoothness of the potential V is required for applying pseudodifferential oper-
ators theory. However, this is crucial into the complementary set of Q but a much weaker regularity hypothesis could be
expected for the interior problem set in Q allowing therefore a wide class of potentials.

Other useful nonlocal operators in the sequel of the paper are the fractional integration operators I/ of order /2 which
are defined by the relation
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1

I?/zf(t) :W /0 (t*S)a/271f(S)dS, for o e N (11)

and have Fourier symbol (%) *2 where I designates the Gamma special function. Another operator is the fractional differen-
tial operator 9}/? given by

1/2 1 L of(s)
o0 - o [ s (12)
with symbol ei*4,/7. All along the paper, we consider that, for a complex number z, v/Z is the principal determination of the
square-root with branch-cut along the negative real axis.

One of the key points of pseudodifferential operator calculus is that it enables to manipulate symbols of operators at the
algebraic level rather than operators at the functional level, therefore giving practical rules of computation e.g. for the com-
position of two variable coefficients integro-differential operators (that is with non polynomial symbols in 7).

2.2.2. Computation of the asymptotic symbolic expansion of the DtN operator
For conciseness, we explain here how to compute the asymptotic expansion of the DtN operator for a given model
Schrédinger equation with smooth variable coefficients A and B

L(X,t, Dy, D)W = i0;W + D2w + Adyw + Bw = 0. (13)

Since we are trying to build an approximation of the DtN operator at the boundary, we must be able to write the normal
derivative trace operator d, (focusing on the right point x;) as a function of the trace operator through an operator A" which
involves some (fractional) time derivatives of w as well as the effect of the potential V and its (x,t) variations. This can be
done in an approximate way thanks to the factorization of L given by relation (13)

L(x,t,0x,0r) = (8 +1A47)(0x +147) +R, (14)

where R € OPS™™ is a smoothing pseudodifferential operator. The operators A* are pseudodifferential operators of order 1/2
(in time) and order zero in x. Computing the operators A* in an exact way through their respective total symbols ¢ (A*) can-
not be expected in general. Therefore, an asymptotic form of the total symbol o(A*) is sought as

+00

OA%) =05~ i (15)

j=0

where ﬁ‘/zfj/z are symbols corresponding to operators of order 1/2 — j/2.
Now, expanding the factorization (14), identifying the terms in L in front of the o, operators with the ones from the ex-
panded factorization and finally using a few symbolic manipulations yield the system of equations

(A +4")=aq
0" — 3 Gl g% 970" = —t+b, (16)
=0

with a(x,t) = 0(A) = A, b(x,t) = a(B) = B, since A and B are two functions of (x, t).
Looking at the first equation of system (16), we see that we must have: 1; , = —2; ,. Now, if we identify the highest order
symbol in the second equation of system (16), then one gets four possibilities

MHp(®) =FV-1 (17)
or
M (X, 8,7) = F/ =T + b(x,1). (18)

The first choice can be viewed as considering a principal classical symbol and the second possibility yields a semi-classical
symbol (following the notations e.g. in [10]). Let us now adopt the first strategy which consists in working on Eq. (1) for u
setting A = 0 and B = V. Following e.g. [ 2], the principal symbol with negative imaginary part characterizes the outgoing part
of the wave field u. Studying the sign of (17) and (18) for a real-valued potential V shows that the negative sign gives the
good choice. Therefore, we obtain the two possible symbols

W= VT (19)
and
}.1*/2 =—v-T+V. (20)

Let us now consider the second choice based on the gauge change leading to compute v solution to (9) for A= f and B = g.
Then, again, choosing (19) yields the outgoing solution for v. However, g is now a complex-valued potential with no fixed
sign. Therefore, we cannot determine the outgoing wave for (18).
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Choosing the principal symbol is a crucial point since it is directly related to the accuracy of the artificial boundary con-
dition. Moreover, for a given choice of the principal symbol, the corrective asymptotic terms {21*/27]- 12}j1 are different since
they are computed in cascade developing the infinite sum in the second equation of (16). For the first strategy, we have the
following proposition.

Proposition 1. Let us fix /11*/2 by the expression (19). Then, the solution to system (16) is given by

1
+_ io g+ st
Aogszﬁg<—mhzuzgwalwz) (21)
and, forje N,j > 1, by
1 J (+1)/2 (—i)* j+1-20
i :TT/Z (béjﬂ — 1044500102 — la’ﬁj/zu/z_z}~tj/2+k/211+/2-k/2 - Z T Z 8‘?;‘J—rj/2+k/2+a8?;“;r/2—k/Z)7 (22)
k=1 o=1 ) k=0

where ;1 =0 if j#1 and 6,1 = 1.
Applying the above proposition to our situation, one obtains the following corollary.

Corollary 1. If we fix the principal symbol ).1*/2 = —v/—71 for a = f and b = g, then the next three terms of the asymptotic symbolic
expansion are given by

, o,V
bg =8V, J5,=0 and Jf, = 4’; . (23)
For the second choice (18), the first symbols of the asymptotic expansion are given by the following proposition.
Proposition 2. If one considers /1{/2 =—v/-1+Vin(16) for a= 0 and b = V, then one has
, , -1 oV
Jg=0, 25,=0, and 27, = 7T —‘L'X+ v (24)

Remark 1. We cannot obtain a general expression similar to (22) for the second choice. The reason is that the terms appear-
ing in (16) may be inhomogeneous. Indeed, derivating the symbols 2" may lead to a sum of several terms of different orders.
This is the case for example for d,4*,, which is the sum of two terms, one of order —1 and the other of order —2.

Remark 2. Considering /1,*/2 = —y/—7in (16) for a =0 and b = V would give some symbols which are approximations of
ﬂ/z = —v/—-7+V and (24) by using a second-order truncated Taylor expansion when |t| — +oc. For this reason, this case
which leads to less accurate artificial boundary conditions will not be considered in the sequel.

2.2.3. Comparison of the exact and approximate symbols for a linear potential
In the case of a linear potential V = x, the total symbol A" (x,T) can be computed. It is thus possible to compare it to its
asymptotic expansion based on (24). Applying a Fourier transform to Eq. (2) yields

U+ (T +x)i=0. (25)
According to [18], the outgoing solution to (25) is

i(x,7) = Ai((x — 1)e 3), (26)
where Ai stands for the Airy function [1]. Derivating this expression, we obtain

Al ((x — T)e im3)

Onll(x,T) = €773 Al((x ~T)e ) i(x, 1), (27)

which means that the total symbol of the DtN operator is
Al ((x — T)e 'm3)

+ _ a2ing3
JF=e A((x—D)e ™7) " (28)
The application of Corollary 2 gives the first-order and second-order approximate symbols
01 =1k, = -iV=T+X%,
(29)

gy = 1(/1;/2 +)ar +/]~ir]/2 +)LJ:1) =01 +}1%+X7

setting V = x.
Let us fix the boundary condition at x, = 10. For comparison, we draw on the two pictures of Fig. 1 the three symbols (28)
and (29) in the complex plane for values of 7 in [-50;0] (left) and [0; 50] (right). For negative values of 7, we observe an
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1=-50:0 -—- x =10

Imaginary part
&
(6]
T

a a >

+
N

_8 i i i i i j
-0.005 0 0.005 0.01 0.015 0.02 0.025 0.03
Real part

t=0:50 —— xr=10

€S ¢ ¢ eeeTeeeTeIIIIETEceIed

+
-0.5

Imaginary part
]
(4}
T

a a=

+
N

-35 I I I I I I
0 1 2 3

Real part

EN
(9]
(o)

Fig. 1. Comparison of the exact total symbol /" and its first- and second-order asymptotic approximations ¢; and ¢, in the complex plane at x, = 10 and for
T € [-50;0] (left picture) and 7 € [0;50] (right picture).

important correction when considering o, instead of ¢;. The order of accuracy is about 10~ for |z| = 50 (see Fig. 2). For po-
sitive values of T we can see that the approximation of the symbol A* is again improved when o, is considered instead of ;.
However, for both approximations, a singularity appears for T = x, while it is not the case for 2" which is smooth. This is the
most dominant error in the approximation process of the symbols (see Fig. 2) and as a consequence in the construction of the
artificial boundary condition. Finally, the error decays when |7| is large (see Fig. 2) which is coherent with the asymptotic
expansion (15) of the symbol 2*. In particular, the symbols 77, and 2*; given by the symbolic calculus rules are exactly
the first terms of the asymptotic expansion of A* in terms of Airy functions (28) for large values of 7 (see e.g. [1] Chapter
10, properties 10.4.58, 10.4.59 and 10.4.61 p. 448).
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t=-100:100 ——- X = 10

T
%o, 1

IA-0,|

6
10 L
-100 -80 -60 -40 -20 0 20 40 60 80 100

Fig. 2. Logarithm of the absolute error |2” — 1| and |2" — 0| with respect to 7. A singularity is observed at point 7 = x, = 10.
2.3. Choosing the ABC

If we assume that V is a real-valued smooth function, then the L?(R)-norm of the solution u to system (1) is conserved. If
we truncate the domain by introducing a fictitious boundary, then one can expect that the L*(Q)-norm of the solution is
bounded by |[uo||;2 (- This is for example proved in [4] in the case of the free-potential. In the case of a general potential,
the expression of the artificial boundary condition is essential in the proof of a similar result. In particular, by adapting
the proof given in [7] using the Plancherel theorem for Laplace transform, the following Lemma is the keypoint for proving
a well-posedness result.

Lemma 1. Let ¢ € H/4(0,T) be a function extended by zero for any time s > T. Then, we have the following properties:

‘R(ei"/“/ 1) 8}/2<pdt> >0,
0

+o0
ER(/ (plt(pdt> =0.
0

This Lemma emphasizes the fact that the artificial boundary condition must have a symmetrical form. Since our approach
gives the principal symbol of an operator, an infinite choice of corresponding operators with this principal symbol is possible.
For symmetrization reasons, we propose to fix the choice of the artificial boundary condition based on the principal symbol
M = —v/—7 and (23) as follows:

Cancelling the outgoing wave corresponding to /1,*/2 for v writes down
OnV+i4*v =0, on Zr. (30)

Retaining the M first symbols {4, ;;»}u_15js0 W€ consider the associated artificial boundary condition
 M-1 )
Ontiy — 1(0V)uy +ie” Y 0p<q/27j /2) (e™uy) =0, on Xy, (31)
=0

after replacing v in (30) by its expression (8). In Eq. (31), uy designates an approximation of u since we do not have a Trans-
parent Boundary Condition. However, uy will be denoted by u in the sequel for conciseness. We adopt the following compact
notation of (31)

Ontt + AM(x,t,0)u=0, on Zr, (32)

where M > 1 corresponds to the order of the boundary condition and is equal to the total number of terms )f/z retained in
the sum. The subscript ¢ = 0 (respectively ¢ = 1) refers to the choice (19) (respectively (20)) of the principal symbol 11*/2.

Let us begin by considering ¢ = 0 and M = 2. Then one directly obtains
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AG(X,, 00U = e /A gl (e iy (33)
which is a symmetrical operator. The case M = 4 is more ambiguous. Indeed, we only have access to the principal symbol
2+, =Y of an operator. A first possible choice would consist in considering that

Op(25y)v = 82‘/1[\/ mod(OPS;*?). (34)

(If A and B are two pseudodifferential operators of order o then we write A = Bmod(OPS’) to designate that A — B are equal
modulo a pseudodifferential operator of OPS’, <o A similar notation will be adopted at the symbol level:
o4 = o mod(S”).) However, the operator in the right-hand side is not symmetrical. Well-posedness results can be however
stated with such a choice but under some very restrictive assumptions on V. A better choice of operator is

Op(2t;)v = sg(9aV) Y [9aV] I <v|a,,vv> mod(OPS;*/?), (35)

2 2

which is symmetrical unlike (34) and leads to a well-posedness result under weaker assumptions. In the above equation,
sg(-) designates the sign function.
We finally obtain the following proposition:

Proposition 3. For ¢ = 0O, the artificial boundary condition of order M is given by

Onll + AYu=0, on Xy, (36)
with

/1(2) (X, t, a[)u — e-im/4@iVixD) (9: /2 (e—iv(x,t)u) (37)
and

Ag(X, £, 00 )u = A3(X, t,0r)u + isg(InV) Y ‘Z"w eV, < v 'g“v‘ eW-f)u) . (38)

The boundary condition (36) is referred to as ABCy in the sequel.

2.4. A well-posedness result for ABC?,"

Considering the artificial boundary conditions (36) of Proposition (3), we get the following well-posedness result.

Proposition 4. Let uy € L?(Q) be a compactly supported initial datum such that Supp(ug) C Q. Let V € C°(R x R",R) be a real-
valued potential. Let us denote by u a solution of the initial boundary value problem

iOu+2u+Vu=0, inQr,
Ontl + AMu =0, on 2y, (39)
u(x,0) = up(x), VX € Q,

where the operators AM, M = 2.4, are defined in Proposition 3. Then, u fulfils the following energy bound:
VE> 0, [[u(t)llzg < lluollzq), (40)

for M = 2. Moreover, if sg(0,V) is constant on Xz, then the inequality (40) holds for M = 4. In particular, this implies that we have
the uniqueness of the solution u of the initial boundary value problem (39).

Proof. Let us multiply the Schrédinger equation by —ii, and integrate by parts on Q. We obtain the following equation:

"Xp |u‘2 o " X ) L[ 2
8[/ de—l[uanu]xl‘Jrl/ |Oxu| dx—l/ V(x,t)ju["dx =0. (41)
Ix JIx Jx

Taking the real part of the above expression and integrating on an arbitrary time interval [0; T] leads to

1 T L N . T Xr
i(”u(T)Hiz(Q)—||Uo||fz(9)):‘.R(/O [luanu]x;dt>+sn<1/0 / V|u|2dxdt). (42)
X

Since V is a real-valued potential, the second term of the right-hand side of Eq. (42) is equal to zero. Therefore, we now have
to study the sign of the first term. Let us focus on ABCg, the case ABCZ being then trivial. The quantity iti(x)d,u(x) is the sum of
the two terms

—ie e ugl* (e Vu) (43)
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and

Sg(i“v) VioaVievu I (\/10aVIe Vu). (44)

Then, for x = x;;, we have to determine the sign of the two quantities

m(fie*“‘/“ / ' w..ra)al/%pl,r(t)dr) (45)
T
m( / 7%(6“‘/4("'-“ H) mltzm_r(t)dt>, (46)

0

with ¢, (t) = (e7Vu)(x,, t) and . (t) = (1/]0nV]e™Vu)(x, t). In the above relations, we set fi, = f(x,), for a given function f.
Thanks to Lemma 1, the term in (45) is negative. Under the assumption that the sign of 9,V (x,,,t) does not depend on the
time t, one can isolate sg(d,V (x;, t)) out of the integral in (46) showing then that the integral term is equal to zero thanks to
Lemma 1. This finally proves that the left-hand side of (42) is negative and that the energy inequality (40) holds. O

Remark 3. If Vis a complex-valued potential [23], some results remain true under the assumption that V is dissipative, that
is 3(V(x,t)) = 0, for (x,t) € R x [0; T|. More precisely, one can still construct the artificial boundary conditions ABC} given by
(36)-(38), with M = 2, 4. Moreover, the well-posedness result holds for ABC3. It is still possible to symmetrize the artificial
boundary condition ABCy by writing

onvl.r = eml"\/ |8nvl.r‘\/ |anvl‘r‘7 (47)

where t—0,,(t) denotes the argument of 9,V on the boundary x,,. However, the adaptation of the proof of the well-posedness
result for the additional term does not seem possible even for a constant argument.

2.5. The other choice of ABC: ABC)'

After studying the first ABC, let us consider the other artificial boundary condition ABCY, for M = 2 and M = 4.
Proposition 5. For ¢ = 1, the artificial boundary condition of order M based on the first strategy for symbols (24) is given by

O+ AYu=0, on (48)
with
A2(x,t,0,)u = Op (—i\/—r + V)u (49)
and
1 0V
AT (X, t,00)u = A3(x, t, 00 )u + 20p <_T — V)u. (50)

The boundary condition (48) is referred to as ABC)" in the sequel of the paper.

Studying the well-posedness of the initial boundary value problem related to the boundary condition ABC}' (48)-(50) is
more difficult than ABCQ". Indeed, the expressions of the pseudodifferential operators involved in (49) and (50) is based on
the inverse Fourier representation (10). Therefore, proving an equivalent result to Lemma 1 cannot be obtained by an argu-
ment based on the Plancherel Theorem for a general potential V depending on x and t. However, if V(x,t) = V(x), then the
well-posedness result is trivial since ABCQ" is strictly equivalent to ABC’OV'. This is the aim of the next section.

2.6. The case V = V(x): connection between the ABCs and numerical accuracy comparisons

Our goal here is to prove that ABCQ" and ABC’l"' are equivalent if the potential does not depend on t. This is no longer true if
Vis also time-dependent (we will see a modified version of these operators for a suitable numerical approximation in Section
3.2). The result is mainly based on the following Lemma.

Lemma 2. If a is a t-independent symbol of S™ and V(x,t) = V(x), then the following identity holds:
Op(a(t — V(x)))u = e Op(a(t)) (e u(x,t)). (51)

Proof. Let us write the definition of the symbol as an inverse Fourier transform and let us make the change of variable
p =1 — V(x) in the considered integral. Then, we have the following set of equalities:
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Op(a(t Vi) = f,a(c — Vi) Fo(u)(x De"de
Jra(p)Fe(u)(x, p + V(x ))eitpeitV(x) dp

e Jualp)7e (tHe WU (x, 1)) (x, p)et” dp
e 0p(a(1))(e VWu(x, 1)),

leading to the proof of the Lemma. O

A direct application of the above Lemma gives the following Corollary.

Corollary 2. If the potential V is time independent, then the artificial boundary conditions ABC{;" and ABC’lw are equivalent, for
M = 2,4, with V(x,t) = tV(x). In particular, the well-posedness of the associated bounded initial value problem is immediate from
Proposition 4.

Proof. The proof is direct applying Lemma 2. O

Among the class of x-dependent potentials, some exact solutions are known (see e.g. [9]) since they can be related to the
free-potential Schrédinger equation. It is in particular known that the following traveling Gaussian beam

oo —ix2 — kox + kit
wixt) = 4t+1eXp< —4t +i (52)

is solution to (1) for V = 0 with suitable initial condition, where kq is the wavenumber. Then, if u is solution to (1) with the
linear potential V(x) = ox, « € R, and uo = ug, it is given by the expression

u(x, £) = e (o) yx (x 20 1), (53)

(Other solutions can be constructed for both repulsive and attractive quadratic potentials [9].) Since the exact reference solu-
tion is known in this case for the gaussian beam, one can compute d,u on the boundary of the computational domain, and
compare it with —A}u to test the accuracy of ABC’X. To this aim, we fix V(x) = x and x, = 5. We present in Fig. 3 the evolution
of the absolute error |9,u + Aju| (which should be equal to zero for a transparent boundary condition) at the right point x;
for various values of ko and on the time interval [0; T], setting T = 1.5. It is computed from the exact operators representa-
tions (11) and (12) using a formal computer algebra system. For completeness, we also provide the results when the TBC of
the Schrodinger equation without potential is used (see Eq. (3)). It is labelled “Without potential”. We directly observe that
the fourth-order ABC always gives a much better accuracy than the second-order one. The results with the “Without
potential” TBC also lead to very large errors. Moreover, the difference increases when higher wavenumbers are considered,
which is consistent with the a priori high-frequency asymptotic expansion (15).

3. Semi-discretization schemes and their properties

The aim of this section is to proceed to the semi-discretization in time of the artificial boundary conditions that we have
previously developed. Let us first consider the boundary conditions ABC’(‘)" . According to Proposition 3, we have

ABC} : Ogu + e ™4e9!/% (e Vu) = 0, (54)

ABC : 9au + e ™49 (e Vu) + isg(9aV) Y g"vlewlt< v lg"w eiVu> =0. (55)

We use the symmetrical form of ABCS, which is a keypoint in the case V = V(x, t). The associated initial boundary value prob-
lem is then

idu+d2u+Vu=0, inQr,
O+ AMu=0, on Xy, for M =2 or 4, (56)
u(-,0) =uo, inQ,

for a maximal time of computation T.

Let us consider an interior Crank-Nicolson scheme for the time discretization of system (56). The interval [0; T] is uni-
formly discretized using N intervals. Let At = T/N be the time step and let us set t, = nAt. Furthermore, u" stands for an
approximation of u(t,) and V" = V(x, t,). If V = V(x) is a time-independent potential, then the Crank-Nicolson discretization
of the Schrédinger equation is given by

=0, forn=0

2 ) 7"'7N7‘1' (57)

. un+1 —u" 5 un+l + un un+l + un
1 0 1%
At % ( 2 ) +

If V = V(x,t), for matters of symmetry, we choose the following time-discretization of the interior equation:
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10° 100 ~
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104 4 10-4
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T T 1 T T 1
0,0 0,5 1,0 1,5 0,0 0,5 1,0 1,5
—— Without potential ——— Order 2 —— Order 4 | —— Without potential ——— Order 2 —— Order 4 |
100 109 ~
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10710 107104
T T 1 T T 1
0,0 0,5 1,0 1,5 0,0 0,5 1,0 1,5
|— Without potential ——— Order 2 —— Order 4 | — Without potential ——— Order 2 —— Order 4 |

Fig. 3. Time variations of the absolute error [Ont + AO’V’ u| at x, = 5, for M = 2,4, and for the “Without potential” ABC, for the exact reference solution. The
potential is V(x,t) = x and we consider four values of ko (top, left: ko = 5; top, right: ko = 8; bottom, left: ko = 10; bottom, right: ko = 12).

gttt AR T L

A X2 2 2 0. (58)
Another possible discretization could be

Lyt _yn 5 ynt1 +un V"H yn+1 + VT

i AL + 0 5 + 3 =0. (59)

Nevertheless, this discretization does not preserve the symmetry of the interior equation. As a consequence, we are unable to
prove a stability result (for discrete convolutions) with this discretization. Thus, we will treat only the discretization given by
(58) where unconditional stability can be obtained.

Let us remark that, for implementation issues, it is often useful to set v'+1 = #"+" — y+1/2 with u~' = 0 and u® = u,. Sim-
ilarly, we set W™ = V" sV" — y"*1/2 Then, the time scheme (58) reads
n+1 un

+ 8£Vn+] + Wn+lvn+1 —2i—

LV
2i AL

At

(60)
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It is well-known that a discretization of the TBC (3) which preserves the stability of the Crank-Nicolson scheme for the
free-potential Schrodinger equation is not a trivial task. We propose here two solutions for the discretization of the ABCs that
we propose. The first one is based on semi-discrete convolutions for the fractional operators involved in (54) and (55). We
are then able to show that the resulting semi-discrete scheme is unconditionally stable. At the same time, a solution based
on convolution operators may require long computational times. The second solution that we study is based on the approx-
imation of the fractional operators through the solution of auxiliary differential equations which can be solved explicitly. The
evaluation is then extremely efficient but at the same time, no stability proof is at hand.

3.1. Discretization based on discrete convolutions

Let us first recall that if (f,),, is a given sequence of complex values, we denote by Z(f,) or f the complex-valued function
defined for |z| > R(Z(f,)) by the series

fo) = 26y@ = fi,
n=0

where R(Z(f,)) is the convergence radius of the series. Then, we have the following proposition (see e.g. [4,6]).

Proposition 6. If {f"},. is a sequence of complex numbers approximating {f(tn)},cx, then the approximations of Ol/zf tn),
11/2f(t,,) and If (t,) with respect to the Crank-Nicolson scheme for a time step At are given by the numerical quadrature formulas

0 °f(tn) = \/%Zﬁn,kf’: (61)
12f(t,) ~ [Zan i (62)

(0 ~ 50> g f (63)

k=0

where the sequences (o) (Ba)pen and (P,)pen are such that

neN?

(oto, 001, 062, 013, 0, 005, . ..) = (1,1,3,3,3,3,..),
Be= (-1, Vk =0, (64)
(y07/17y27y37"'):(172727"')'

Moreover, their respective Z-transforms are given by

200D =iy 2@ = iy 2@ = (65)

for|z| > 1.

Remark 4. Let us remark that analytical formulae for (64) are also given in [25].

The weak formulation of (58) writes, for y € L*(Q)

%It . r(vn+l _ )l/IdX+ [a V’Hll// / K] v“*‘(‘)xz//dx+ / Wn+1 nHl/ldX _ (66)

According to the interior scheme (58), the semi-discretization of ABC2 for v at time ¢, is

n+1
n+1 i
anvn+1(xl.r) e M/ \/ § Bni1-re xlr)

and for ABC;
; n+1
On il (Xl ) _e-in/4g iwnt / Zﬁnﬂ e —iwk k Xl )
\00aW™ A ,/aw"
~isgioaw ) VI g PPN LA

2

with the notation W™ = % Then, we have the following proposition:
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Proposition 7. The semi-discrete Crank-Nicolson scheme for the initial boundary value problem (56) is given by
2 2y L Wy =0, in Q

8,1\/"“ A¥mynit — 0 on X, for M =2 or 4, (67)
u’ =uy, inQ,

forn=0,...,N—1, where y*! = v a Wt — V"V" qnd where the semi-discrete operators AZ™", Ag™! are defined by
N 2 n+1
Az n+1 Yyl @-in/4giv e Zﬁnﬂ kefn/v" k (68)
4n+1,n+1 20+l n+1 | n+1 | nH‘ iwn+l At . ‘a"Wk| —iwk, ok
A"V = AGTTIV - isg(a W) e ;ymfkTe vk, (69)

Here, W™ is defined by W"*! = W V'(x) being the approximation of V(x, t,) using the trapezoidal rule 63 (V is given by (7)).
Moreover, for M = 2, one has the following energy inequality:

vne{0,...,N}, Hu””LZ(Q) < HHOHLZ(Q) (70)

and if sg(9,W") is constant, then (70) also holds for M = 4. This proves the L*(Q) stability of the scheme. Inequality (70) is the
semi-discrete version of (40) under the corresponding assumptions.

Proof. Let us multiply the first equation of (67) by —ivP+! and integrate by parts on Q. This gives, forp > 0

/ P12 — uP)? + iS3(uP1P)
2At

dx — {P“E)v”+1 +1/|6v1’“| dx - /W”“)v"“| dx=0
Since V is assumed to be real, taking the real part of this expression yields

2 2
1 [urt! li20) = 1UP1l2(0 — X
— 2 =9 i[vpﬂ v”“] .
At 2 < O X

Summing up the terms in the above equation from p = 0 to p = n — 1, we obtain

1 n—1
ZAt(nu"fz@|u°||fz<g>)=iﬁ<2 o] ) > oA (71)

p=0 y=lr
with
n-1
A},‘,It(ZlvPH 6,,1/"*1()(},)) fory=1r. (72)
p=0

Let us focus on the right endpoint x;, the left endpoint x, can be treated similarly. We get
Ty, p+1 . —im/4 2 e p+1 . —iwk ok
VP (x,) 0P (x,) = —ie e v Zﬁpﬂ,ke Py
At A/ |0 WP ,/|a w¥|
+ Sg(aanH) = e p+1 Z Yok = . lWI;Vk

2 2 r
that is
n—1 4 / p+1 At n—1 p+1
l Xr 8 Vp le - IH] Zﬂpﬂ kyr + Sg anWr Z lPIrH] Z"))p+1,,<l//’:7 (73)
p=0 p=0 k=0

with yk = e Mivk, gk — 7”‘”;‘”5‘ e Mk, W’r‘ = W"(x,) and W¥ = W¥(x,). The assumption that sg(8,W¥) is constant is
fundamental here. This implies that the study of the second term of the right-hand side of (73) reduces to the study of a
symmetrical term similar to the first term of the right-hand side. To determine the sign of the real part of the two terms
in the right-hand side of (73), we use the following Lemma. O

Lemma 3. Let (8,), and (y,), be the sequences defined in (64). Let (¢*),., be a complex valued sequence such that R, < 1. Then,
we have the following properties

p+1

Q, fe*“”“Z(pP“Zﬁ 1Pk € RTUIR™ (74)

p=0 k=
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and
n-1 p+1
Q}' = @il Zypﬂ—k(pk €iR. (75)
p=0 k=0

This result immediately shows that the real part of the first term in the right-hand side of (73) is negative, whereas the
second term is purely imaginary. Finally, the inequality (70) holds, ending hence the proof of Proposition 7.

Let us prove now Lemma 3.
Proof. [Proof of Lemma 3]. Another way of writing Q; is given by
n-1 p+1 ; n-1
Q=) (90‘”1 Zﬁpﬂkq}() = P T (B o) il Z D1 (Btedk) oy
p=0 k=0 p=0
where we have extended (¢*)y_,., to an infinite sequence (¢}),y by
. ok if k<n,
A S o (76)
(-1Yo" if k=n+j,withj>0.
We recall the Plancherel theorem [11].

Lemma 4.

Let us consider two sequences (fp),cy and (gp) If RiRg < 1, then Z(ﬁgp) exists for |z| > R;:Rg and we have

peN*

prgpfz(fpgp 271 2n/ freing ( ) (77)

where the integration path is a circle with radius r such that R; <1 < 1/Rs. Moreover, if the two radii satisfy Ry <1 and Ry < 1,
then r =1 can be chosen in (77).

Applying Lemma 4, we have 1
Q= Z(F Bty )z = 1) == [ FleMate)d.

Using the shifting and convolution theorems (see e.g. [11]), we obtain

fo) = 2000 =23 1o
£0) = Z((Be ety ) @ =251 2((Bemo), ) @ = 2L 280 002

with ¢(z) = Z(¢*)(z). Hence, a new expression of Q; is obtained as

Q”:_%/o {z+1‘ |F}

Moreover, since z— =2 maps (0, 1) to iR, the application z— — ie"

(74). Similarly, we have for Q,

z—ell

/4, 32 transforms €(0,1) to R™ UiR"~, proving relation

1 172 .
Q, :ﬁ/o {%‘ QD(Z)IZZ(VH)(Z)} deG
1 f2° 112 . 1
:*ﬁ/o {Z; ||¢(2)|21+§} do.

Z—elt

This implies that Q, € iR since the image of C(0, 1) is iR by z— {2 This finally proves relation (75) and completes the proof of
Lemma 3. O

3.2. Discretization based on auxiliary functions

While the previous strategy based on discrete convolution operators seems accurate and provides a stability result, it may
lead to significantly long computational times. Moreover, we will see during the numerical simulations that very small time
steps At are required to attain the optimal accuracy of the artificial boundary conditions based on convolution operators. This
can be relaxed using the following approach.

We saw that the ABCOM and ABCQ" boundary conditions are equivalent in the case of time independent potentials. This is no
longer true for a time dependent function V. In such a situation, the scheme developed above can be used for ABCOM . For ABC’lv' ,
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the discretizations of the resulting pseudodifferential operators involved is not easy to obtain. In particular, the operators
with square-root symbols cannot be expressed in terms of fractional time operators since Lemma 2 does not hold. For these
reasons, we introduce the following additional approximations.

Lemma 5. The two following approximations hold

Op<\/—f + V) =/id; +V mod(OPS—/?) -
and
Op<a:1V —rl+ v) R |Z“V| (i + V)" lg“w mod(OPS ) 79)

Proof. Let us set A = /id; + V. The operator A is of order 1/2 and its total symbol 64 admits thus an expansion under the
form: 64 ~ 3,5 0a1/2-¢/2. Since A’ = i9, + V, we have
A%) =a(io,+V) = 2 gl
OA%) =00 +V)=-T+V~ ) i

=0

a?O’Aaf(O'A. (80)

Using the asymptotic expansion of g4 and an identification of the same order terms in (80), we obtain the following
approximation:

O'A:O'(\/iat-‘rV):\/—‘c.FV_lLa mod(S~*?).
8 yT+V

In terms of operators, this gives relation (78).
Similarly, setting B = (i9; + V)~!, B"! = i9; + V and writing 6(BB™!) = 1, we get the asymptotic expansion

1 A%

a(io +V) "' = — Coa VP

mod(S™). (81)

If o,(P) designates the principal symbol of a pseudodifferential operator P, the following set of equalities holds:

VIoaV| . -1 V10aV n . -
ap<sg(8.,V) Y1 g, 4 v) 12') = sgav) Y60, 1+ v)!

2 4 (82)
A
4 14V’
Combining (81) and (82), we obtain (79) at the operators level. O
Thanks to Lemma 5, we now define the new approximations of ABC’l"’ (see Proposition 5)
ABC? : 9t — iv/i0; + Vu =0, (83)
ABC" : dntt — iv/i0; + Vit + 5g(9aV) Y |g.,w (i0,+ V)" <V‘;V u) =0. (84)

Let us begin by the second-order condition (83). An alternative approach to discrete convolutions (which cannot be applied
here) consists in approximating the square-root operator /id; + V using rational functions like in the present paper the mth
order Padé approximants [22]

VEnRnt) =y + 3 WE _Shgp 30 Gl (85)
; Cgd) =Y Hztrd
where the coefficients (a}")y..,, and (d}'); . are given by
ar =0, a'= ﬁ 7 = tan? (W) 86)
m cos? (T)
Formally, /i0; + V is approximated by
m m
Ru(i0c + V) =>_ap = > apdy'(io, +V + dy) . (87)

k=0 k=1

Applying this process to Eq. (83), we have the new relation

m m
Ontt — 1Y afu+iY " ardy(i0,+V +dy) 'u=0, (88)
k=0 k=1
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which defines a second-order artificial boundary condition referred to as ABC?\m in the sequel. To write a suitable form of the
equation in view of an efficient numerical treatment, we classically introduce m auxiliary functions ¢,, for 1 < k < m (see
Lindmann [19]) as follows:

Q= (100 +V+df) u (89)
leading to the following equation:

0, + (V+d)o, =u, for1<k<matx=ux,, (90)
with the initial condition ¢,(x,0) = 0. The corresponding full artificial boundary condition is written as a system

L . m
Ohu—iy au+id ajd, ¢, =0
k=0 k=1

. m 91)
o, + (V+d)o, =u, for 1 <k<m, x=ux,,
@(x,0)=0.

Now, we have to discretize the above system. The semi-discretization of the interior scheme remains the same as before
(58), and consequently, (91) becomes

OpU™172 _j Z amun+1/2 +i Z a?d’” n+1/2 0,
k=

1‘/’;{‘“7(/)k+(v"+]/2 +dm) n+1/2 un+]/27 (92)

¢y =0,

for 1 < k <m and x = x,, that is, in terms of v" functions

OV — i Z amvtt i Z ardygp'? =0,

n+1 (93)
lwk (P,( + (Wn+1 + dk )(p7:+1/2 V’H],
@ =0.
The auxiliary function ¢*! can be easily expressed at point x;, as
i widy 1
n+1 __ At 2 n n+1
0L (1e) = 2t ) + — V™ ). (94)
At 2 At 2
Using the first equation of (93), we finally obtain
m i m 2i n
n+1 an n+1 At Py (Xl,l')
R DI Z vy T} (xir) IZ“ CTweg 2 ®3)
=0 k=1 At 7 At

Eq. (95) finally gives a local inhomogeneous Fourier-Robin-type ABC, where the right-hand side is updated using (94).
Now, let us consider the fourth-order condition ABC} given by (84)

Onll — iV/10; + Vi + sg(0aV) Y |g.,V\ (i, + V) (%‘%) on X x R. (96)
Then, one has to introduce one more additional auxiliary function v such that
. V|0V
(10 + V) = %u. (97)

We call ABC‘l“m the resulting approximation of AE‘} using the Padé approximation (85) and the additional differential
equation (97). Using again a Crank-Nicolson discretization of , one gets the following approximate representation of
ABC] .
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. m .om ‘(r) Wn+l‘ |
OV (xip) + | -1 al +4 3 al L"l% + %Sg(aﬂwﬁl) VW
k=0 k=1 i r

Wi+l gm 2
i k
at— 3

L 20 O (x11) 1 [oaWPT 2 M (x
= -y apdy gty B - sg(0aWiT) Vot e P
k=1 &Jr Lr k

Lr 2 witl 2 9
Lr

i
7 AT

M PR (Xue) + e VI (),
i Lr k dglr k
At 2
oo /Wi
e N
Wit U (Xl,r) + Wit v (Xl,r)7
i 5 ﬁJr 1,

r
2

902(X1,r) = ‘//0 (Xl,r) =0,

withl1 <k<mandO<n<<N-1.

We previously proved (see Proposition 7) that the schemes based on the discrete convolutions are unconditionally
stable. It does not seem to be the case when rational Padé approximations are used. We do not have a proof of that
result but let us explain why unconditional stability does not hold through numerical investigations. One of the key-
points in Proposition 7 for proving the unconditional stability of the scheme based on convolution operators is that

the application F : z—F(z) := —ie™™* 1z maps C(0,1) to R~ UiR". The analogous stability result for the Padé approxima-
tion would essentially be obtained by stating that it is also true for the application F, : z—F(2) := —ie"™/4R,, (}—E .

Unfortunately, this does not seem to be true. In particular, the image is even not in the lower left quarter plane when
z is close to the singular point —1. To illustrate this point, we draw in Fig. 4 the argument of both F and Fso and we also
zoom near z = —1. As it can be seen, sign problems can arise prohibiting an a priori possible proof of an unconditional
stability result.

4. Numerical examples

For the numerical simulations, we consider the initial gaussian datum: uy(x) = ek ywhere kg designates the wave
number fixed to: ko = 10 in our simulations. Concerning the spatial discretization, we use a variational formulation of the
semi-discrete time problem for n, elements (with size h) and integrate the ABCs in the scheme as a Fourier—Robin boundary
condition.

We split our analysis in two parts: time independent and time dependent potentials.
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Fig. 4. Possible loss of stability for the rational Padé approximation. We compute the argument of F(ei’) and Fso(e'’) for 0 € [0;27] (left picture). We zoom
ne